piston 105 inches in diameter by 12 feet stroke, and upon a recent engineers' trial-trip, achieved the re markable spged of 420 feet, or $17 \frac{1}{2}$ double strokes per minute. We have no doubt that the engine will be able to add materially to thisspeed, as the machinery was entirely new, it being merely an experimental trip. This is not an isolated caso, by any means. The City of Buffalo, formerly a passenger steamer upon Lake Erie, now dismantled for the want of trade, had an engine with a cylinder of 76 inches diameter and 12 feet stroke, which drove paddle- wheels 34 feet in diameter, whose floats had 31 inches face, were 11 feet long, and had from 36 to 40 inches dip-191 rev olutions, or 39 single strokes per minute. By a severe exercise of mathemathical knowledge, we ascertain this to be a piston speed of 468 feet per minute. We remember these facts and figures vory well, as at that time we were pretty much occupied in looking after the engine aforesaid. The beam weighed nearly sistcen tuns, and was stopped and started thirty-nine times in a minute, working with great ease and certainty. The beam of a beam engine appears to some to be an insuperable obstacle to the gencral adoption of the class of engines to which it belongs; and its weight, momentum, velocity, \&cc., are charged heavily to its demerit. These theories, we fancy, are disturbed by the actual facts in the case, whichare, thatthe beam is so poised and balanced on its center that the supposed shock of chang. ing its line of motion is utterly neutralized; and as for the weight--that is supported by the framing, and is no more against the power exerted by the pis ton thau the smoke stack. A beam weighing fifteen tuns, or eighteen tuns, can be moved through any portion of its arc of vibration, by the strength of a man; providing, of course, that the binders of the pillow blocks are not screwed up, and that the journals set fairly on the brass. The above cited cases of the speed of beam-engine pistons are all distanced by the extraordinary performance of the C. Vanderbilt, a Sound steamer, in her race, June, 1847. This en gine is of 65 inches cylinder and 12 feet stroke, and on the occaslou mentioned, attained to 540 feet, or 224 double strokes per minute. It is not at all uncommon or extraordi nary to obtain a piston speed in beam engines, of 400 feet per minute, in this coon try; but the performance of the Golden City, we think, is the best on record, considering the sise o the cylinder.

Since writing the above, we have ascertained that all the facts just mentioned are below the mark The Mississippi, a large paddle steamer, having an 81 inchcylinderand 12 feet stroke, has made 24 revolu tions per minute, the wheels having 36 inches dip, and attaining a piston speed of 576 feet per minute. The Metropolis, a large Sound steamer, having a cyl inder of 105 inches diameter and 12 feet stroke, has made 20 revolutions per minute, and we think a higher number. The working beam on the Mississtippi weighs fourteen tuns; that on the Metropolis about sixteen tuns. The engine of the New World-a sidewheel steamboat 420 feet long, on the Hudson river, having a 76 inch cylinder, and fifteen feet stroke, has made twenty revolutions per minute, or forty single strokes. The Richard Stockton, however, has out stripped the whole fleet, and, we think, attained the highest piston speed for an engine of this class ever made in the world. We do not know the exact dimensions of the cylinder, but have been told it is between 50 and 60 inches, with ten feet stroke The Stockton has feathering wheels, and makes 32 revolutions, or 64 single strokes, per minute; and has done this duty for years, having been built by Robert L. Stevens for the express object of testing tbe speed at which a piston could safely travol. This is the highest speed within our knowledge everattained by a piston in an engive of similar size ; if any other instances come to mind we shall place them on re cord. It would be difficult to point out any other class of marine engine of the same size as that in the Golden Cily, which could achieve $17 \frac{1}{2}$ turns a min ute, and keepit up as a regular duty. The standard of 250 feet per minute will have to be changed, and made to suit modern pistons, as the engines themselves stubbornly refuse to be controlled by any such snail-like movement.

Tre English papers state that all the winners at he laterifle matches were blue-eyed men.

## PORTABLE ENGINES.

It is astonishing how mankind in general, and farmers in particular, obstinately adhere to the traditions and usages of the past. We allude at this par ticular time to the substitution of machinery for hand labor. While agricultural implements of all kinds are having a fair trial, we think it not amise to say a word here in favor of the power that drives these machines-that much-abused animal the horse. We have assumed, broadly, that in most in stances the horse furnishes the motive power. This assertion is, webelieve, the fact in the case ; and it is a state of things which might be changed for the better by the adoption of the steam engine. A machine of this class can be had for about the same price that a pair of first-rate horses will cost ; with the advantage that it has, stored up within its brass and iron muscles, the force of three teams; and that it never tires, as flesh and blood does. Not only is this true, but the cost of keeping a pair of horses and that of running a steam engine of two horse power, is not to be compared for an instant. For it must be recollected that the engine will do the work in half the time required by an animal: that it consumes only when actually at work; and is not "eating its own head off"' when the earth produces nothing, and man rests from the labor of the summer.
It is our opinion that in every instance where a stationary power can be employed, steam will be found preferable to any other that is used for farming purposes. With the same degree of intelligence that will keep a pair of horses from being ruined, or injured in body and health, the steam engine can be run and kept in order; and as the latter can be wheeled from place to place, there are but few localities where it could not be advantageously introduced. In rocky and hilly countries, in new landwhere stumps spread out their roots, and neither use the ground themselves, nor permit the farmer to do so-the steam engine, aided by the proper tools, would soon subdue these intractable obstacles, and clear the way for the seed that comes after.
We think it would be a profitable speculation for some enterprising farmer to introduce a portable engine to his nelghborhood, and let it out to his neighbors at a nominal price, so that its practical advantages would be manifested to the most prejudiced person. We are not so enthusiastic as some on this subject ; we do not foresee the time when every farmer shall have his portable engine, just as certainly as they all have churns; for such a state of things would be unadrisable. But we do think that for all the rough work about a farm (and of this there is plenty) steam power would be much more efficient and economical that any other in use : and we hope to see sufficient enterprise manifested to enable us to chronicle the advent of many more engines than there are at present on the large farms about the country.

## PERPETUAL MOTION

The Boston Journal publishes a letter from a cor respondent at Newport, Vt., who describes a " perpetual motion" machine, on exhibition at that place, and states that it is attracting great attention. Mr. Leach, of Vermont, claims to be the inventor. The writer says :-
"It is a simple wheel, runs on gudgeons, and is independent of any outside spring, weight, or power, as a propeller. On the same axle on which the metal wheel is fixed, is a band wheel, on which a baud runs over a small pulley that drivesa small circular saw. Set it on a table and remove the brake, and it will start itself and run with great velocity, driving the saw. It is the simplest thing in the world, though I cannot intelligibly describe it ; but it is at once understood by the beholder. Jt will not, nay cannot, stop without a brake, as it is so fixed by means of balls and arms, that the descending side of the wheel is perpetually further from the center of motion than the opposite ascending. The most incredulous beholder hore is at once convinced, on seeing it, that a wheel can be made its own motive power. The model runs on and runs ever. It is a amall wheel, ten inches in diameter, with ounce balls attacher to morable arms. Whether an increase in the dimensions of the wheel will increase its power in proportion, remains to be tried; but one thing is certain, it will make

Mr. Leach, who is poor, a wealthy man. It is no cheat, no hambug, no Yankee trick, but a stubborn and fixed fact ; and ere long the world will be convinced that the principle of perpetual motion ever existed, and has now been discovered by a Green Mountain boy."
It is evident from the above that the fools are not all dead yet. When the laws of nature are so far reversed that water will flow up-hill, instead of down -when men can lift themselves by pulling upon the seats of their pantaloons-then, and not till then, will wheels manufacture their own motive power.
The above device is a cheat and a humbug. In principle it is the same as the "perpetual motion" of Willis, exhibited in this city about seven years ago, of which an engraving may be found on page 201, Vol. XI. (old series), Scientific Ambrican. A concealed hellows was the motor in that case, we believe. Several contrivances on the same plan were subsequently exhibited at Barnum's Museum. This Vermont show is probably one of them. Many people have been gulled by these perpetual motions; but we never knew that any of the "gay deceivers" who manage them, have made fortunes. It is to be hoped not, at any rate.

## PRIZE EXAIBITION OF FARM: ENGINES

For several years past, much attention has been directed, in England, to improved steam engines for farmers ; and an exhibition of such motors was lately held by the Royal Agricultural Society, at Worcester. On this occasion the engines were divided into two classes, namely, fixed and portable. Seven of the first order, none of which were to excecd 10 -horse power, competed for prizes. Their power was tested with a friction brake, and a certain quantity of coal was weighed out to each. The amount of coal consumed per horse-power ranged from 4.88 fbs . to 15.32 fos. per hour. The one which consumed the least coal gained the first prize of $£ 15$ ? $(\$ 75)$.
No less than nincteen portable engines competed for prizes. They ranged from 4 to 12 horse-power, and were divided into three eections, according to their size. The consumption of coal, per horse-power, ranged from 3.59 tbs . to 13.28 fbs ., per hour ; and the prize, of $£ 10$, was awarded to the one which consumed the least fuel. In all the trials, the small ongines consumed a proportionally greater amonnt of fuel than the large ones. The price of each engive was given in to the prize committce. The one which gained the first prize was valued at $£ 230$ (about $\$ 115$ per horse-power). The price of the smallest was $£ 85$ (a 4 -horse power.) The boilers of all were of the tubular character, and each engine was so constructed, according to the conditions of trial, that it could be easily taken apart, and its valves and pistons inspected. The judges of these trials were, D. K. Clarke, C. E., inspector of machinery in the International Exhibition, and author of a work on railway machinery, G. V. Gooch, C. E., J. Stewart and J. Easton, railway engineers.

## APPLICATIONS FOR THE EXTENBION OF PAT. ENTS.

The following persons have applied to the Commissioner of Patents for the extension of their pattents for a term of seven years:-
Method of fitting the Heaving Socket and Head of Wind-lasses,-Charles Perley, of New York city, obtained a patent on the 13th of November, 1849, for a method of fitting the heaving socket and head of windlasses. The said Charles Perley now prays for the extension of the patent.
Binder Pulley.s or Belts and Brakes.-Mertoun C. Bryant, of Lnwell, Mass, obtained a patent on the 18th of November, 1849, for an improvement in binder pulleys for belts and brakes. Caroline Bryant, executrix, of Lowell, Mass., now prays for the extension of the patent.
The testimony on the above applications will be closed on the 12th day of October next ; depositions and other papers relied uponas testimony, must be filed in the Office on or before the morning of that day.
Incms. for Werming Figured Fabrics.-Moses Marshall, of Lowell, Mass., obtained a patent on the 11th of December, 1849, for a loom for weaving figured fabrics, and now prays for the extension of his patent. The testimony will be closed on the 9th of Novem-
ber next ; depositions and other papers relied upon as testimony, must be filed in the Office on or before the morniug of that day.

## RECENT AMERICAN PATENTS.

The following are some of the most important improvements for which Letters Patent were issued from the United States Patent Office last week. The claims may be found in the official list :-

Machine for Rolling the Seams of Boots and Shoes.In the manufacture of boots and shoes, particularly of leather or morocco, it is essential, in order to produce good work, to rub the seams well down on the inner side. Up to the present time this operation has been performed entirely by hand, with great uxertion and loss of time. The object of this invention is to perform the operation of rubbing down or rolling the seams, by machinery capable of being driven by other than human power, and the invention consists in the arrangement of a roller arm connected by suitable mechanism with a rotary shaft, and working on a curved or straight bed, whichsupports the material to berolled, in such a mannerthat by imparting to the shafta continuous rotary motion, the roller assumes a reciprocating rectilinear motion, traveling repeatedly over the seam on the bed; the bed is adjustable, to conform to the shape of different seams, and the pressure is increased or decreased by a simple arrangement of springs. John C. White, of Auburn, N. Y., is the inventor of this machine.
Device for turning Crank Pins.-The object of this invention is to obtain a simple and portable device, so constructed and arranged that it may be readily applied to the diving wheels of locomotives, and in such relation with their crank pins as to admit of the latter being turned and made true, without detaching the pins from the wheels or removing the wheels from the locomotive. Socrates S. Cheney and Danforth Cheney, of Galesburg, Ill., are the invent ors of this device.
Paddle wheel.-This invention relates to paddlewheels with series of narrow buckets of a parabolic or curvilinear shape. The principal objection to such paddle-wheels as heretofore constructed, has been, that though in the highest degree effective, when rotating in a direction to act upon the water with the convex faces of their buckets to propel the vessel ahead, they fail to operate as well as is desirable when rotating in the opposite direction, and bence cannot be very successfully used in backing the vessel. The reason for this has been that the buckets, in entering and passing through the water, have divided it and pushed it aside, instead of taking hold of it and acting with a direct pressure. The principal object of thisinventionis to makethe wheel more effective in backing ; and to this end it consists in dividing the wheel in a plane perpendicular to its axis by means of a partition ring, thus making the buckets of the form of semi-parabolas, and so setting the said buckets between the said partition ring and two outer rings of a depth equal to the depth of a scries of buckets, that the buckets on one side of the partition alternate with those on the other side of the partition, by which means not only is the above mentioned result accomplished, but the wheel is made stronger, and produces less vibration of the vessel when propelling in a forward direction. Addison C. Fletcher, of New York city, is the inventor of this improvement.
Car Brake.-This invention relates to a new and improved railroad car brake, of that class designed to be operated simultaneously on a train of cars, by the engineer or his attendant. The invention consists in the employment of wedges connected by chyins or ropes to a shaft, which extends the whole length of the train; the wedges being fitted between drums on the axles of the trucks or the wheels thereof, and inclined plates attached to the trucks, all arranged so as to operate very effectively. Isaac N. Pyle, of Decatur, Ind., is the inventor of this improvement.
Back Numbers and Volumes of the 8cientific American
VOLUMES I., II., III., IV., V., VII. AND VIII. (NEW SERIES) complete (bnund) may be bad at this notice and from periodiral dealers. Price, bound, $\mathbf{\$ 2 2 5}$ per volume, liy mail, 83-which in. cluclea postage. Erery mechanif, inventor or artizan in the United
States should bavea complete set of this pubication for referenca States should bave a complete set of this publication for reference.
Subscribers should not fail to preserva their numbers for bindlig. vOL. VI. Is out of print and eanmet be supplied.


ISSUED FROM THE UNITED $8 T A T E B$ PATENT OFFICE for the febr midng august 11, 1863. Eeported Officiaty for the Sotentific Amertioan
*** Pamphlets containing the Patent Laws and full particulars of the mode of applying for Letters Patent, speci$f$ ing size of model required, and much other information useful to inventors, may be had gratis ny addressing MUNN \& CO., Publishers of the Scientific American, New York.

39,455.-Breech-loading Fire-arm.-John S. Adams, Taunton, Mass.:
 berarings, ec, and the false trunnions, fi, the whole applied aud



 33,456.- Kefrigerating Apparatus.-J. L. Alberger, Buf.
falo, N. Y.: I claiman apparatus con struoted substantally a a herein deseribed

 39,457.-Universal Chuck.-Manoah Alden, Philadelphia, Pa.:
 he chuck, and arranged to operate the jaws, a a a, substantially in
 case substantially as deseribed.

## 39,458.-Steam Engine.-John Baird, New York City

 stantally as specified, the combination being substanually such as


 the rod perfros the dooble duty of sustaining the piston and the
cylinder beads, substantially as set fortb.
39,459.-Dish-heater.-William Brand, Burlington, Iowa:
 Arructed and operatiog substantially as and 'for ihe purposes de soribed. In combination with the horizontal chambers or bor berein
deceribed the adjustable etandards or

 stantially as described.
39,460.-A mbulance.-Clarissa Britain, Saint Joseph, Mich.:
 and wagon body A, all arr anged and operatiog substantially as and
for the
 and supp
scribed.
39,461.-Fastening for Studs or Buttons.-Laura M. Bron-
 ounter eye as shown, and for the purposes set forth as specified. 39,462.-Invalid Back-rest.-William Felix Brown, New Bedford, Mass.:



39,463.-Grain Binder.-W. W. Burson, Atkinson, III.: I claim, frist, The combination of the wire-lever, A, and double
 scting subs lantially as described and for the purpose set forth.

 rings, $00^{\prime}$, and lever, $A$, acting substantially as described, and for 8ixth, The combithation of the spool, $G$, wire-covering bell, $H$, and
Sub
Sar, substantially as sel forth Seventh, The combinalito ot the crank, $P$, spring, $U$, rod, $m$, drop
catch $W$, and whe $T$, acting substantaily a described. Elghth, The combin allon of thehook, a, cam, d, and pliers, b, ac 39,464-Grain Fork -H M \& W Wurson
,464.-Grain Fork.-H. M. \& W. W. Burson, Atkinson,
III. Ante-dated July $3,1863:$
pose set forth.
Becomb, The combination of the handle, A, fork, B, clasp, $\mathbf{C}$, and
itman, D, acting substantially as described and for the purpose set pitma
39,465.-Lathe for turning Locomotive Crank Pins.-S. S.
\& Danforth Cheney, Galesburg, Ill:
We claim the plates, A $\mathrm{b}^{\text {, in connection with the revolving tion or }}$


39,466.-Grain Dryer.-M. C. Cogswell \& A. G. Williams, Buffalo. N. Y.:
We claim an orifice or opening made at the aide of the case, in anch


We also claim the jacket B (with or without its lid, b'), in combina-
tion with the case, $A$, for the purposesand substantially as described. 39,467.-Cane Mill.-D. M. Coek, Mansfield, Ohio I claim. first, The matching circular wedges arranged on and con-
stituting the splintering and expressingsurfaces of a roller-cane mill, suhstantially as and for the purpones set forth.
Second, A roller cane mill constructed to operate upon the cane
with the nne series of interlocking rolls in the manner set forth. Second, A ronier-cane min constructed theperate upot forthe cane
wiht he one series of interlocking rolls, in the manner set forth
Third, Splintering cane, cxpesing the juice therefom, driving Third, Splintering cane, expressing the juice therefrom, diving
the ungeared rolls and relieving the journals of the rolls, by means
of circular wedges, as set forth. of circular wedpes, as set forth,
Fourtb, The combination of the rilers, director, $C$, an
all constructed and arranged substantially as described.
39,468.-Fastening for Skates.-C. T. Day, Newark, N. J. I claim operating or adjusting the bars, D, which have the jaws, $d, ~$
at their ends through the medum of the circular plates, E arranged so as to turn on pivots, g, and prorided with eccentric slots, f, into
wbich pendent pins, e, atite inner ends of the Lars, D, are fitted,
sibstantide substantially as and for the purpose seif forth.
I further claim holding the plates, $E$, and $c$

 [This invention relates to an improved fastening for securing the skate to the boot or shoe, and of that class which are composed of Theinvention consistsin an improved meansfor operating the clamps or jaws, whereby the same may bereadily adjusted eo as to grasp the sole and heel ot the boot or shoe firmly and also readily detached or moved therefrom, and firmly beld in position when grasping the sole and beel.]
39,469.-Let-off Mechanism for Looms.-Geurge DraperMilford, Mass.:
level, $k$, its wheel, 1 , and theap cong not only of the escapement detent operating such detent lever, but of a sopponing mechandism (riz., the
lever,, and its connecting rod, 1), to be operated by the lay, or Fhile the lav may be beaten up, ibe whole being arranged substan-
Cially as and for the purpose specified. thally as and for the purpose specified
39,470.-Construction of Sheet Metal Tanks.-Alfred Ed-
wards, Chicago, Ill. Ante-dated May 18, 1863
Tciaim not only the construction of a receptacle with a double bot
tom, by means of cuttinf and vending two peeces of he material,
 ting and bending any number of pleces according to the size und
shape of the receptacle, the piecess in all cases to be latid crosowise 39,471.-Lighting Street Lamps.-Hosea Elliot, New York City: the case, C , self.closing dor, d, pole, B, and thumb- plece, D, all con-
structed and uperating in the manner and for the purpose substan-
tailly as shown and described. tailly as shown and described.
(This invention consikts in the arrangement of an adjustable lamp attached to a rod or pole which is provided with a thumb-piece and with a case enclosing the lamp in such a manner, that by depressing be thumb-piece the lamp is tilted and the door of the case enclosing the lamp is thrown open, allowing the fiame of said adjustable lamp to come in contact with the burner of a street lamp, and obviatiog the necessity of climbing up on aladder in order.tolightsaidstreetlamps,
or other lamps or lights which cannot be reached from the ground.] 39,472.-Treating Night Soil for Agricultural Purposes.-
R. B. Fitts, Philadelphia, Pa. Ante-dated Dec. 19, 1862:
I claim the process berein described and specified, for the purposes
set forth. 39,473.-Paddle Wheel.-Addison C. Fletcher, New York I clatin the construction of a paddle wheel with alternating narrow semi-iparabolic or curyilinoar buckets, $D E$ E F, arranged in series as
deserlbed and rings, $\mathbf{C}$ C $\mathbf{C}^{\prime}$, outside of and betwen the said buckets, the whole combinedand arranged substantially as herein described. 30,474.-Welt-guide for Sewing Machines. - Hannibal Folsom, Milford, Mass.:
I claim in combination with the gage, $B$, the well-guide, $C$, made with the bearing surfaces, a bc, and with a s spring, g, or its equila.
lent for xeepfugthe welt in lateral position, and for creating teusion
upon it as set forth.
 Antedated Oct. 24,1862 :
claim, first, The combination and arrangement of the two rotat I claim, first, The combination and arrangement of the two rotat-
Ing whefis, one armed with teeth a a a, the otber with scrapgr
hlades, $K$ K, seDarately or combined, the frame, C C, and the divider. D, all constructed and operating substantially as and for the purpose
 donble flange,, , and driving wheels, A A, as and for ibe purpose
abore dezcribed. 39,476.-Mounting Artificial Teeth.-John C. Faller, Chicago, Ill.:
I claim, first, Constructing a plation or other metailic base plate
 the teeth, b, allixed therein substantially as described, with a vulcan-
zed rubber base substantially as and for the purposes berein de-
39,477.-Spur for Horsemen's use. -Thomas 'Garrick,
Providence, R. I.:
I claim the improved spur for borsemen's use described, consisting of a spur with a screw shank, D, and a compressing nind supporting
clamp, B. provided with the pur points a a a, or their equivalents substantially as and for the purposes specified.
39,478.-Dumping Wagon--R. W. Green, Bradford, Pa: sides, J J, the box hinged sections, MM, Mamper, consingiructed with circular
frames, $\mathbf{K}$ K, all arranged andoperating substantian with the pivoted
 39,479.-Breech-loading Fire-arm.-Henry Gross, Tiffin, Ohio: I claim, first, As an auxiliary device to a breech-loading fire-arm
operaing si bstantially as described, the pivoted guide, E working in opersting su bstantially as described, the pivoted guide, E, working in
thesht. D, nd maintainimg during its onp and down movementin the path of a circle a close relation betwen tis forwavd end and the
preech end of the gun barrel, substantially as and for the purpose set frith.
Secnind, Connecting the plug-carrier,
F, to the guide,
E, substantiallird, Theconsiruction of the slot, $D$, with its face, a, ooncentric with the Axis, a, of the gulde. E, In combination wilh the auxilliry deacribed.
Frurth, $\mathbf{A}$ brecch piece, $F$, with plug, $c$, on its front end, made so as to recelve $\boldsymbol{n}$ eccentric within it and to wholly encircle the same
and also to admit a wedge segm ent, $J$, iurear of ti, and tikew ise admit a gulde, E, above it, all su bstantially as and for the purpose se
 br eech piece, $F$ c, space closing device, E, and peculiarly formed slot,
D, substantially as and for the purpose set forth. 39,480.-Manufactnre of Water Gas.-W. H. Gwynne, White Plains, N. Y.:
I claim passing steam super-heated or otherwike th rough melted
metal or ores, for the purpones described and shown 39,481.-Filling Molds with Vulcanizable Gnms.-Joscph ,481-Filling Molds with Vulcanizable Gnms.-Joscph
Charles Howells, Washington, D. C.: I claim the introduction of rulcanizable gume into molds or faaks
byinjection, inbitanitaly as sel forth and by the apparatus heretn
described or ite equivalent.

