
[Reported Officially for the S ientific American.] LIST OF PATENT CLAIMS Iabued from the United States Patent
for the webe bnding october $16,1853$.
 Propellers-By Ebeneser Beard, of Now Sharon, Me.:
Iclaiam the tue of one or more flanges or rims paced
circumerentially upon the blades of a screw propeller,
as described.

$[$ [see Am.$]$

 (See engraving of this implement on page 372 , Vol. \&
Sci Am.) Instruments for PLorting-By Thos. Hinkley, of Eal.
Iowil, Me. I claim the method or means of obtaining
inthe matine
 with paralle bars), as specified, two sliding and rotary
stiat trata arzanged connett, and supported so as to
operate together, as described. Crutivg Boors-By Daniel Lynahon, of Buffalo N. Y. Y.:
I clain the tongue which frits gives of the vamp a more
exact crimped turn, secondly. covers the seam from be.

 holding th
set forth.
isee eng
[See engravin

Bonnell's Patent Flouring Process.

[Continued from pare 43.],
The actual amount or proportion of bran proper, found in the wheat, necessary to make barrel of superfine flour, is so inconsiderable that its misture with the flour could do little good, and its rejection no hurt, if with it there was not rejected and lost a large amount of flour material, that is highly nutritious, by imperfection in the manufacturing and separation. The only injury that would follow by finely pulverising the bran, and incorporating the whole of it with the flour would be, the reducing its texture or color below that standard fixed by arbitrary custom as a test of its value, hence, as that custom must be complied with, the art in the manufacture consists in getting the greatest possible amount of flour and nutritive ma terial from the wheat, and rejecting just so much of the bran as will leave the texture of the for mer agreeable to the standard fixed by society To do this it must be apparent that the primary and most important desideratum in manufacturing wheat into flour, is perfect and uniform pulverization of all and every part susceptible of being made, or that it is desirable to make into flour. Could this be done, but little judgment or skill is required to separate the flour by bolting and reject the bran. But perfect pulverization cannot be attained by one process of grinding, and the reasons are obvious, when we come to examine the different constituent properties of wheat; the different proportion of these properties in each different variety; the amount varying, too, as the climate in which it is produced varies; mode of culture; time grees of moisture and dryness found in each crop when delivered at the market or in the mill. Then there is a great difficulty in keeping the mill stones dressed, and otherwise in a proper and perfectly equal condition, besides their operation and effect is constantly subject to variation in motion, and by the atmosphere affecting both the grinding and bolting in its various changes. If the wheat was all in a proper and equal condition in other respects, being composed of about 60 to 70 per cent. of starch, which is soft, porous and tender, and from 16 to 22 per cent. of gluten, which is hard, tough, and elastic, there would still be great difficulty in producing perfect pulverization. The gluten is located in a thin layer around the outside of the starch and immediately under the outer coating of the grain, to which it adheres with great tenacity, and if we attempt to grind so "close" and fine as to divest the bran of all this valuable material, and at the same time reduce it to a proper degree of fineness to sift through the bolts, the extra friction required is liable to reduce the starch too fine, and to produce too much heat, which, affecting the oily or fatty matter in the grain, and uniting with the fine particles of flour forms a sort of paste, and not only glazes the mill stones, but fills the meshes of the bolt cloth and destroys or greatly retards the bolting. Flour ground in this manner may look well enough to pass inspection, but as the angular or gritty quality is too much destroyed, there is a want of what millers call "body" to it, and it is found inferior for bread. If we grind "high" or coarse enough to preerve the good grinding property or conditions of the mill stones, avoid glazing, and pregood bolting; we cannot divest the bran, feeds,
flour will be so unequally pulverized, that coarse bolt cloth must be used to ensure a " yield," and to associate with the flour that desirable nutritive property which the partially ground particles are known to contain, and which, if obtained by the use of coarse cloth, subjects the flour to be "scratched" in market, by letting through with the flour fine particles of bran, which hurts it only for inspection. If this coarse Hour is sifted out, as it usually is, with No. 4,5 6 , or 7 cloth, and returned back to the superfine bolts, which are covered with 9 and 10 cloth, it is evident but a small portion of it passes through them, and incorporates with the superfine flour, but it passes along the bolts until reaching again cloth of sufficient " mesh " to let it through, is thus returned ad infinitum, over-laboring and wearing out the superfine bolts, and is subsequently thrown off with the feeds offal, or a large proportion of it, making a loss of nutriment to the flour and of profit to the manufacturer.
To obviate these difficulties I propose, by my mproved process, to intercept the whole body of the offal, or that which shall be equivalent, as it leaves the tail of the superfine bolts, or at any other convenient place, and instead of passing it into the subsequent bolts, as is usual, submitit immediately and continuously to a second grinding through an auxiliary mill fitted and adapted for that purpose. By this means the starch, haring been bolted out, the offal is divested of all the remaining flour material, and all the coarser particles may be pulverized to about the same degree of fineness as that previously bolted out through the superfine bolts. The offal thus ground to any degree of fineness desired, is thrown into the succeeding bolts, or flour dresser or dusters, which should be covered with fine cloth (9 or 10) or any equivalent material; when the flour is separated from the offal, and from the head of the return bolt, the best flour may be sent back or returned to the cooler or super fine bolts, to be incorporated with the superfine or other flour, or it may be packed or used as a separate article of any desired quality.
The flour material being, by the re-grinding, perfectly pulverised and reduced to the same Gueness of the starch, the bolt cloth necessarily requires to be finer than that formerly used on all the bolts or dusters, except the superfine, and those used for dividing the feeds, and from the head of each bolt or duster used, the best flour produced should be sent back or returned -not to the cooler in all cases, as usual, but to the head of the next preceding bolt. The next best flour produced along the middle of each bolt should be returned to the head of the same bolt, or back to its own head. And the brown specky material sifted through near the "tail of any bolt," should be sent with the offal to the head of the next bolt or duster that succeeds it. By this means there is no coarse or partially ground flour going back to the first bolts as formerly. The labor on each bolt is uniform and equal, and the flour sent to the superfine bolt from the return bolts, having once been bolted through fine 9 or 10 cloth, will readily pass through the superfine bolts and incorporate with the flour. This bolting, dusting, sift ing, and separating may be continued to any extent desired, and if the rule above indicated is carefully observed, or that which shall be equivalent, the fino particles of bran may be perfectly separated from the flour, and the perfect pulverization of the grain will ensure the greatest possible yield of a rich nutritious article of flour, possessing " good body," being ground to an equal degree of fineness and not 00 fine.

(To be Continued.)

Preserving Animal Substances.

Messrs. Editors:-In number 45, July 23, vol. 8, Scientific American, I notice an article under the head-" To test the purity of water," which reminded me of something peculiar that I had seen myself. It has been stated that rain water was anantidote to cholera; while in England, two years since, on a visit to the distinguished Andrew Crosse, Esq., the great chemical electrician, among other experiments, he placed a putrid ox hide in a bath of electrifed water, where it remained four hours; when taken out
from the animal. In reflecting upon this experiment afterwards, it occurred tome that if such an effect can be producel upon a dead mass, that it must inevitably produce equal effects upon the living, hence I applied Crosse's discovery to electrified batbs. Referring to the assertion that the use of rain water was an antidote to cholera, I tried to examine into the causes, why. That it is the purest water will not be denied, unless it be electrified water, patented by Crosse, and illustrated in vol. 7, Scientific American. Now if rain water pasees through the atmosphere in its descent, (which is always more or less charged with electricity,) and descends electrified water, which is an antiseptic, may not this be the cause why rain water, in its constant use, is an antidote to cholera? I am, very respectfully,
Havana, Cuba, 15 th Sept., '53.
[Although we have seen it stated a number of times, that rain water is an antidote to cholera, we have no positive testimony in proof of the alledgment. If it is an antidote, it is not owing to its antiseptic qnalities, which are far inferior to those of many spring waters. Rain waters are nu more electrified than well waters, because, when they fall to the earth, they are in a state of equilibrium, electrically, with the earth.

Large shlp.
The "Newburyport Herald," referring to the launch of the Great Republic, says:-
"Mr. McKay, we hear, will immediately commence the construction of a ship larger than this, which he is to buald by contract.
"The theory has been started of building a ship so large, that she will pass through the ocean with comparatively little motion, ploughing directly through the waves, without rising upon them, and so high above them that the highest waves will almays be below the decks. It is a daring thought, but in view of what bas been accomplished already, who will venture to denounce it as absurd? There are those bold enough to predict, that a ship will yet be built that will pass through the stormy waves on the ocean with as stately a progress as a vessel gale."
[That such a ship can be built we have no doubt at all, but it will have to draw about 50 or 60 feet of water. Such a vessel could enter very few ports in the world, because there is not a sufficient depth of water to float such a vessel. It would not be wise, we think, to build vessels of such magnitude. There is certainly a limit to the economic size of vessels, but what that is we cannot tell, nor can any other person at present ; experience alone can settle this question. A ship named the Columbus, built at Quebec, in 1824, by Charles Wood, was nearly of as large tonnage as the Great Republic. It was launched with 4,000 tons of cargo on board. It was 300 feet long, 50 feet in breadth and 30 feet deep. Her speed was so very great that she took only 54 days to cross the Atlantic, anchored safely in the Downs, and in a storm was afterwards driven on the coast of France, and wrecked. There is certainly a great difference betwen the voyage of the Columbus, 54 days, and the Sovereign of the Seas, 14 daysso much for 29 years progress.

Guano Accumulations.
A writer in the "North British Agriculturist, states that he has examined all the Islands in the rainless latitudes of West Africa, and that all the guano that was found upon them bas been removed. He states that ons foot of guano accumulates on Halifax Island in Angra Pequina Bay in three years. This would amount to $1333 \frac{1}{\frac{1}{8}}$ feet in 4000 years. This certainly overthrows all the arguments that were advanced to prove the great age of this planet by some who have calculated that the guano of the 300 feet hills in the Lobos Islands required a ccumulations for ages betore, it is recorded our world was created.

The Great India Rubber Case
On the 20th inst., at New Haven, Ct., Judge Ingersoll refused to grant an injunction in the case of Horace H. Day versus L. Candes \& Co., of New Haven, which was argued there a for weeks ago, before the U. S. Circuit.

