## Sicentific ${ }^{\text {giflusemm. }}$

Ventilation on Board of ships
A report has been submitted to the U. S. Senate by Senator Fish, on the subject of "Health on Board of Emigrant Ships," which contains a great mass of information relative to the causes of mortality on board of some ships and the healthiness of others. From the statistics presented, it appears that while some ships from Liverpool had not a death on board the whole voyage, others had between 70 and 80, and that with fewer passengers, and shorter voyages by some days. This occurred at the same season of the year, and the passages were made on nearly the same lines of latitude. The great cause of so much disease, in the cases referred to, is attributed to bad ventilation, and we conceive that the report has struck the true nail on the head. It is our opinion that the inhalation of impure air is the cause of nine-tenths of all the diseases in the world. What is Malaria but impure air ; and is not every epedemic principally caused by a peculiar state of the atmosphere? Far too little attention is paid to having a supply of pure, fresh air-that food of our lungs, without which we cannot exist for two minutes.

## Improved Hay Press.

This engraving is a perspective view of a press adapted for packing hay, cotton, hops, hemp, \&c., for which two patents have been granted, one on the 6th and the other on the 16th of Junelast, to Levi Dederick, of the city of Albany, N. Y. One patent is for an improvement on the doors of the press, and the other is for an improvement in operating the follower-giving it a parallel motion, while pressing, by toggle levers.
The Doors.-A is the case or box in which the cotton, hay, or other article to be pressed is placed. It has a trap-door, B B, and a side door, C. The cotton, or hay is placed in the case through the top opening. The side door especially, requires to be very securely fasten ed to resist the great pressure that comes upon it. This door is secured to a stile, $D$, having a small round tenon at each end. These fit loosely in recesses in the top and bottom pieces of the frame. To this stile, and also to the door, C , are secured two arms or battens, $c c$, the outer ends of which project a short distance beyond the edge of the door, C. E is a stile attached to the top and bottom pie ces, like the one at $D$, but not to the door This stile, E , has recesses, $d$, which, when the door is closed, fit over the end of the bat tens, $c c$. Fis an arm or lever attached to the stile, E , by a pivot, when the door is closed ; the out. $r$ end of this arm or lever is fitted in a recess in the stile. The door, C , is thus made perfectly secure; the outer ends of battens, $c$ fitting in the recesses, $d d$, and the outer end of the bar lever, fitting in the recess, $f$. To unfasten the door, raise the outer end of $F$ from the recess, $f$, and turn the stile, E , around till the ends of the battens clear the recesses, $d d$. This door is for discharging the compressed material-hay, cotton, \&c. The top door, when closed, is secured by a bar, G, which is attached to a bridge, to the front edge of the door. The baris provided at each end with a flan*e, $h$, to catch in the top side pieces, $i i$, of the frame, and this secures the top door on the hay or cotton, when the case is full for pressing. By raising the lever, $H$, to a vertical position, the bar, $G$, is turned so as to free the flanges, $h h$, from the caps, $i i$, and the door can be opened.
The Levers.-The follower presses horizontally in the case, $\mathbf{A}$; it is not seen, but suffice it to say, that the inner ends of the levers, J K , are secured to it-the one above the other These levers are connected by rods, N , at their outer ends, and these have pivot joints passing through the levers. L $M$ are other levers secured by pivots to J K, and to lugs, by like joints in the posts. There is a pulley attached to each side of the follower lever, K , below the ends of the connecting arms is a large roller O. A rope, $R$, is secured at one end on the
bottom of the frame, then passes over the out-
side pulley, at $N$, then down around the roller, | lower thrust forward, pressing the hay, cotton, side pulley, at $N$, then down around the roller,
0 , then up and over thrugt forward, pressing the hay, cotton, 0 , then up and over the nigh pulley, $N$, then
down and around the pulley, on the bottom of material with great force. The levers
have a quick motion, and exert little power the frame. By pulling on this rope-by wind- when they frst commence to act, but have a ing it upon a windlass, \&c., the upper ends of slow motion, and exert the greatest power near


## DEDERICK'S PARALLEL LEVER HAY PRESS.


tion required. The action of these levers is understand, it gives great satisfaction where it parallel, like that of the joints of a parallel is used. As a cloth press, one of them is in ruler.
use at the Harmony Mills, Cohoes, N. Y., and
The rope, $P$, is connected at one end to the it is easy to perceive that it can be used for follower, then passes over a pulley on the top many purposes. It can be made very strong scantling of the frame, and down over another and durable. One that can press 500 lbs of pulley. This cord is for drawing back the fol- hay costa about $\$ 175$, and one that can press ower and elevating the levers, when the cotton a bale of 200 lbs about $\$ 100$.
or hay is pressed and secured in bale. This More information may be obtained of Deer press may have a door on one or both sides. ing \& Dederick, Premium Agricultural Hall, \{t is a very simple press, indeed, and as we Albany, N. Y.

## SWORD FISH PROPELLER.



The annexed engravings are views of a Pro- pendicular to the sbaft. The resistance of the peller for which a patent was granted to C. T. P. Ware, (dramatist,) of this city on the 4th of last October. Figure 1 represents the Propeler, which resembles the taid of the East Indian Sword Fish; and figure 2 is a transverse section of the stern of a vessel with the propeller, H; $S$ is the shaft; $W$ is the water line. The blades decrease in thickness from their junction at H, towards every point of their outer and inner boundaries. The inner boundary is tiffer than the outer boundary, and therefore rields less to the resistance of the water. The haft is to be actuated by alternate partial revolutions, like the action of the fish tail, and the bladıs vibrate vertically on either side of the dead wood of a vessel; therefore the point of the outer extremeties of the propeller, when not opposd by any resistance will describe the arc of a circle, as shown by the dotted lines arc of a circle, as shown by the dotted lines
water, however, causes portions of the blade remote from the shaft to yield readily. The blades are made of india rubber, or any other substance of an elastic pliant nature, in combination with inflexible ribs, like the ribbed membraneous fins and tails of fish.
The inventor has expressed himself satisfied, from close observation, that the tail of the East Indian sword fish, as also the wings of the swiftest insects and birds, are moved in this manner-that is to say, in a plane perpendicuar to the direction of flight. That the sweep of the blades is arbitrarily confined to that plane, although propulsion is by no means entirely effected by the constant screw-like pressure resulting from this movement, but chiefly by the backward throw of their extremities, consequent upon their being turned from one direction to its opposite, imparting a series of
serves unceasingly to keep up-so that at the ond of each stroke, instead of a loss, there is a gain of propulsive force.
These impulses he supposes are further increased in effect as the vessel advances, by the well known current which follows the upward or downward sweep of the blade (asin a screw) and which, taking place at its forward edge, leaves an almost unyielding fulcrum for the rear edge and extremity to ect upon when whipped back in the opposite direction.
The advantages claimed for this propeller are, that, whereas a vessel of eight feet draught would be limited to a screw of eight feet, or less, it would admit of these blades being 16 feet from tip to tip, (with a throw of 1.6 of a circle) allowing her that extent of screw surface (of increasing pitch) independent of their main action as above cited. The throw can be increased or diminished according to the draught of the vessel while the same speed will result-the less throw admitting of more frequent impulses-the greater, less frequent but more effectual ones. The water leavea the after part of the vessel in a direct line, and without the least apparent disturbance or re vulsion. If the vessel be under sail, there is no necessity of rai ing the propeller, its blades cutting the water edgewise when not in use. By a very simple device the position of the blades is reversed, and the vessel is backed.
During a recent experimentin this city with a hand power boat, it was shown that the most powerful oarsman was unable to pull against a very trifling movement of the propeller. The blades were made of Ryder's half vulcanized gutta percha, not $1-20$ of an inch thick, and the back rib of whalebone.
More information may be obtained by letter addressed to Mr . Ware, at $60 \overline{\mathrm{E}}$ Broadway.

## Orange Water Melou.

Mr. Peabody, of the "Soil of the South," bas recently presented the Columbus "Times" a specimen of this vegetable curiosity. The rind peels off like the orange and leaves the whole of the rich, luscious pulp into a lobate mass, which also divides into parts, and is most delightfully flavored. This water melon is a native of China.


Manufacturers and Inventors A new volume or the SCIENTIFIC AMERICAN Is commenced aboat-thesoth September, each year, and is the BEST PAPER for Mechanics and Inventors pubis hed in the world.
Each Volume contains418 pa ges of most valuable readcon is inastrated with over
s00 MECHANICAL ENGRAVIDGB Of NEW INVENTIONS. cr The Soientifio ambrionnis a Wreaty Jocz wat of the
ARTB,
ARTS, BCIENCES, AND MECHANIOB, having for ite object the advancement of the imterists of ygceaniog, manuractubirs AND INVENTORB.
Each Number is innastrated with from FIVE TO TEN Nach Number is illastrated with from Fig
ORIGINAL EN©RA VINGI of NEW MECHANICAL INVENTIONS, nearls all of the bestinventions whichare patented at Washington being illustrated in the 8cientific American. It also contains a Weikir Liar of AMERICAN Patents;-
notices of the progress of all MECHANICAL AND sct. notices of the progress of all MECHANICAL AND BCI Congtracotios, Manageverx, and Osa of all kinds of MAtHINERY, TOOLs, \&c. \&c.
It is printed with new type on beartiful paper, and being adapted to binding, the sabscriber is possessed, at the
end of the year, of a LARGE VOLOME of 416 PAGEB Ilastrated with apmards of 500 MEOEANICAL ENGRA. VING8.
The sclentile $\Delta$ merican ts the Repertory of Patent In. ventions: a volume, each complote in ittell, forman an En. yolopedia of the useful and entertaining. The Patent
Casma alone are worth ten times the sabsoription price to evers lnventor.

us Pallon atreeh New York

