Stimutific Americin.

THE ADVOCATE OF INDOSTRT, AND JOURNAL OF SCIENTIPIC, MECHANICAL AND OTHER IMPROVEMENTS.

8OINNMIT
SOIENTIFIOAMERIOAN, pubianme wrrax. at 128 Fulton street, N. Y. (Sun Buildings.) by IUNN \in CO.

 Avery Bellford \& Co., London
B. G. Oontenay. Oarieston,
H. Taslor. Baltimore, Md.
Responsmble Agents may alo be fo nd in all the prin-
cipal cities and towns in the Onited 8tates Ripal cities and towns in the Onited States. der in six montha.

Improvement in Dresaing Flax.
Within the past few years the genius of inventors has been greatly stimulated, to make improvements in dressing flax, as the expense of preparing it for spinning is indeed the principal reason why linen is so dear in comparison with cotton when made into goods. Of the many inventions heretofore presested to the public, the annex ed engravings represent an improvement, for which a patent was granted to E. L. Norfolk, of Salem, Mass., on the 9th of May last.
Fig. 1 is a longitudinal vertical section of a machine having the improvemente, and fig. 2 is a plan of the same; fig. 3 is a plan of part of the apparatus which regulates the feed; fig. 4 is a perspective view of one of the regulating trunks, and fig. 5 is a longitudinal vertical section of the same. Similar letters of reference indicate corresponding parts in each of the several figures.
The invention consists in a certain device for regulating the movements of the rollers which supply the fiax to the machine, whereby the said rollers are made to feed the material at a speed corresponding inversely with the quantity passing between them, or to stop entirely when the quantity become so great as to render a stoppage necessary. The working parts of the machine are all supported by the frame, A, and receive motion from the driving shaft, B. In this machine only two toothed cylinders, C and D, are used, the first of which, C, revolves at a comparatively slow speed, and is placed in suitable bearings between the pair of drawing rollers, E E, and the two pairs of feed rollers, F F, all of which are hung in suitable bearings, parallel with it, and as close as practicable to the points of its teeth. The peripheries, F F, revolve at about one-sixth of the speed of the points of the teeth of the cylinder, C , and those of the drawing rollers, E E, at the same, or a little greater speed than the points of the said teeth. The second toothed cylinder, D, is placed in suitable bearings between a pair of feed rollers, $\mathrm{F}^{\prime} \mathrm{F}^{\prime}$, and a pair of drawing rollers, $E^{\prime} E^{\prime}$, which are also hung in suitable bearings, and revolve at about the same speed, in relation to the points of its teeth, as the first-named feed and drawing rollers do to the teeth of the first cylinder. The feed rollers, $F^{\prime} F^{\prime}$, must revolve at the same speed, or faster than the drawing rollers, E E, hence the points of the teeth of D will revolve at about six times the speed of those of C. The feed rollers, G G G, which supply the fiax in the first instance to the machine, are in six sets; but any number of sets may be used, each hung in independent bearings; there are three rollers in each set, and they receive an intermittent rotary motion by the following means: on the lowest rollers of each set is a toothed wheel, a, into which gears an endless screw, b, near the upper end of an upright shaft, c, which works in bearings in a cross-piece, H, at the top, and a support, I, at the bottom; this shaft carries, near its lower end, a toothed wheel, d, which gears

wheels, J (of which one is for each set of feed | pawls to act alternately to turn the wheel in $\mid j$. The intermittent rotary motion of the rollers) which are all hung loosely on a hori- the direction of the arrow shown on it in fig. wheel, J , gives a similar motion to the uprigh

 gaged by two parts, $h h$, attached to the short ment of the bar, N, necessary to work the levlevers, L L', both working loosely on the shaft, ers and pawls, is given by means of six eccen-保 $G G G$, is much slower than that of the rollers, two a theshaft, K, to a N, which slides freely in through gearing from the main shaft, and a ing rollere, and give the first draw to the fibers, horizontal guides, f and ${ }^{\circ} g$, one lever occupy- spring, j, which is connected to the bar, N, The position of the several eccentrics on the ing a position above and the other below the and to the guide, g; the bar being forced back shaft, P, should be such, that they will cause shaft, and the pawls, h, being so arranged or towards the wheel, J , by the eccentrics, and the intermittent movements of the ratl a that when a horizontal reciprocating motion is being drawn forward against a suitable stop, $G G$, to commence successively, and not all at
given to the bar, N, the levers will cause the which willbe hereafterdescribed, by thespring, once, to insure greater regularity in the aggre-
 en en

362

the back of the trunk, and has its front end Philadelphia. We are glad to know that Penn resting upon the bottom of the trunk, or upon sylvania has such excellent gas-producing coal whatever is placed therein or passing through but we must say that the analysis of Dr. Chil it-resting therefore upon the fiax. A weight, ton rather puzzles us. What is meant by l, is suspended from the end of a pair of arms, "bitumen" is difficult to tell, and affords no $\boldsymbol{m} \boldsymbol{m}$, which stand out from the front of the lid satisfaction whatever respecting its gas produc or mouth-piece; and this weight causes the ing qualities; in fact, it affords poor consola flax to be tightly compressed in the trunk. The tion for the character of the coal in the manuarms, $m m$, are connected by a rod, n, to the facture of gas, for it simply means, that only shorter arm of a lever, J, of the first order, 33 per cent. of the coal, will produce as much which works upon a fixed fulcrum, o, the long. gas as an equal quantity of bitumen
er arm of the said lever having a wedge, p, We saw some experiments made about ten suspended from it, which wedge constitutes years ago, with Pennsylvania bituminous coal, the stop before alluded to for arresting the for- in making gas, which were rery satisfactory, ward motion of the bar, N . The wedge, p, but the coal is not equal to good cannel by any woiks in a slot, q, in the forward end of the means for producing it.
said bar, passes through a slot, r, in the guide bar, g, and rests against the back side of the front part of the said guide bar, which, as will be seen by reference to fig. 1 , is of angular form. The bar, N , is arrested in its forward motion by the back part of the slot, r, coming in contact with the wedge, the hight of which will therefore regulate itz movement. When the wedge is raised so that its point only enters the slot, it will not arrest the bar at all; and consequently the latter then receives the full throw of the eccentric; but when the broadest part of the wedge is in the slot, the bar is pushed so far back, that the eccentric will scarcely act upon it at all, or the wedge may be made broad enough to stop the movement of the bar, N, entirely, and thus stop the feed. The parts are so adjusted, that when the proper quantity is being fed through the trunks, the mouth-piece, k, will, by means of the arms, $m m$, rod, n, and lever, U, hold the wedge such a hight as to allow the bar, N, the proper movement necessary to give the feed rollers the required amount of motion every time they act, and should there be any increase in the quantity of feed, the mouth-piece will be raised, and cause the wedge to be depressed, and therefore lessen the length of the tead; the contrary elfect being produced if the quantity of the feed decreases. The amount of the feed may be increased or decreased at pleasure, by altering the length of the rod, n, or by altering the distanc 3 of the wedge from the lever, J .
More information may be obtained of this invention by letter addressed to the patentee, at Salem, his place of residence.

Penngylvania Coal for Gas
" Op to the present time our Philadelphia Gas Works have been dependent, in a great degree, upon the collieries of Eogland for their supply of material. The coal fields of Western Pennsylvania have not furnished an available substitute. This fact gives more than ordinary interest to the discovery of gas-producing coal in the immediate track of the Sunbury and Erie Railroad. We subjoin extracts from a report made by the Manhattas Gas Company, on the gas-producing qualities of this new Pennsylvania product, and an analysis of it , made by Dr . Chilton, of New York.

Manhattau Gas Company, of New York, 14th June, 1854. Charged with McKean and Elk County coal, 150 lbs.

Produced	st			g
"	2nd	"	153	"
"	3rd	"	155	"
"	4th	"	127	"
"	5th	"	69	"
			649	

One tun of coal, $2,249 \mathrm{lbs}$., will produce 9,691 feet gas and 44 bushels coke of a supeior quality, weighing $1,523 \mathrm{lbs}$.
Analysis for the McKean and Rochester Coal O., by James R. Chilton, M. D., New York.

Fixed Carbon,	58.87
Bitumen,	33.21
Water,	$4 \cdot 10$
Ashes,	382

In 100 parts.'
This is a remarkably good quality of coal. It gields a good substantial coke, and, in its mode of burning, closely resembles the best kind of Liverpool coal The proportion of the fy are reas, that the elephant and sulphur in the sample analyzed was very strength. small.'"
econd part of an inch other, say the thirtyhus formed in a con apart; hang the string ill find that the monenient position, and you of the silk thread with the conductors of a gal vanic battery, that the whole string will con tract ; separate the thread and the "conduc tors," and they will fall to their first position. This experiment will be found both amusing and instructive to repeat often. Here we have a specimen of animal electro-magnetism, only that the animal has, instead of our one string and 100 beads, many hundreds of strings (Ebers) and millions of beads (globules). and that instead of the globules being strung on a thread, they areinca.ed in hollow tubes (fibers) and connected with spinal fiexible electric conductors (nerves.) Who will be the first to re produce artificially one of these natural elec-tro-magnets?

Yet after all, I may be permitted to ask, will ever electro-maguetism supersede steam? It is my opinion that electro-magnetic power can inasmuch as horse-power is in reality nothing else but electro,magnetism. Still I believe that it artificialelectro-magnetism ever attains the perfection that we find in nature, that it will be used for purposes for which it would be impossible to employ steam. If it ever at tains perfection, it can be employed for navigating the air, for which purpose steam totally unsuited on account of its weight.

Philadelphia, 1855.

Artifilal Ice...The Sonth
Messrs. Edirors-It would be a great favor to myself, as well as to thousands in the inte rior of the South, if you, or some other gentleman of science, will, through the columns of your extended journal, make known a practical way of making ice artificially, either through chemical or mechanical means.
What has become of the machine patented about two years ago by D. Gorrie, of New Or leans, which was propelled by a steam engine, and in an experiment tried "froze several bot tles of sherry, and producedice of a cubicfoo when the thermometer stood at 80° ?"
This information, if imparted and promulgated, would not injure theice trade of the North, which will always monopolize, with increased prosperity, thecommercial marts and thoroughfares of the South, but would prove of vast value only to the interior of the South among the thousands cut off entirely from all commer. cial facilities, as for instance the interior of Louisiana or Texas, where I expect soon to locate, hence my peculiar personal interest in th matter.
S. S. Rembert.

Memphis, Tenn. July 12, 1854.
[We do not know of any feasible plan for producing ice artificially except at an expenseso great as to preclude its manufacture for common purposes. If there was any person in our country who could make ice ecomically, be would not be at a loss where to go make his fortune.

nventors and Inventions.

Messrs. Editors.-Wishing to open a short correspondence with you, I will do so by following your instructions-to be brief and come right to the point without an apology.
I am au inventor-theoretically at least-and
I think a very successful oue. But want of means has prevented me from getting any of my numerous inventions patented, and also from putting them in practice.
Now the question is, how shall I, (in indigent circumstances, and not much acquainted with business matters,) dispose of my valuable stock of patentable ideas, and useful inventions, Yours, N. C.
W——, N. Y., July 12, 1854.
[We have received, from time to time a great number of letters similar in import to the above, and an answer to this one will save much trouble to those who might hereafterlike the present correspondent-seek our advice. We advise him to concentrate hisideas, and perfect one of his inventions, patent it, then devote his energies to introduce it, and
inventions, so as to obtain a justly deserved remuneration from them. If hisinventions are really useful, a favorable result may reasonably be anticipated if he follows our advice. It is scarcely possible to find any person who will advance means to assist an inventor in perfect ing his improvements.
The public are suspicious of unpatented in entions, therefore the most wise course for ny inventor to pursue, is to secure his inven tion by patent, and thus obtain something tan ible for sale, and full protection for its use very effort of industry and economy should be made for this purpose; itis the only ration I plan to pursue-the best advice we cangive oinventor can pursue a more unwise course or himself than to study over an indefinit umber of improvements without perfecting single one of them. He never will accomplish any good for himself or for others by such con
duct. Let every inventor finish one invention
before he commences another, and by sodoing he may be sure of success.

ndian Relics

We have received from Henry F. Baker, o enterville, Ind., drawings of four peculiarly haped stones which were recently found in an Indian mound on the banks of the White Water near where he resides. They are finely polish ed, he says, and resemble petrified wood. One of them is shaped.like a double hatchet, and another like a single hatchet, but the othe two have no resemblance to any tool or trinket within the scope of our knowledge. Two of the stones are perforated with a single hole each, and the others with two tapering holes. A number of human bones were found along with hem, thus showing that the mound was a war ior's cairn. An old gentleman living in the above-named place-a Free Mason-and hig dvanced in the Order claims them as jewels the con the years ago. This is pretty good; he knows, at east, better than we do, to what uses they were applied, and he no doubt would be excel ent authority to consult on the ancient race of our continent.

Improvement in Rolling Railroad Bars.
We learn by our cotemporary, the "Miner's Journal," Potteville, Pa., that Mr. Harris of that place, has recently made some very valu able improvements in rolling railroad irons hich are thus described
"By the (present) plan, each pair of rolls has nine separate grooves, through which the heated mass from the furnace is successively passed, until it is delivered from the last in the shape of a railroad bar.
Now, instead of the one set of rolls containing the nine grooves; by the new process, there are nine separate pairs of rolls, each having but one groove-arranged in one continuous line, with close ducts or boxes between; $\varepsilon 0$ that the "pile" (the hot ball of metal) is fed in at one end, and comes out at the other a railroad bar!"

This new arrangement of the rolls, is exact ly like those of the drawing rollers in cotton spinning each succeeding pair, moving with an increased velocity. The advantages of these improvements are appreciable at a glance, and we believe are entirely new, although we have read that Arkwright received his first idea of spinning by rollers from machinery employed the manufacture of iron bars, but which, so ar as we have seen, was not arranged like that of Mr. Harris.

New Plating Apparatne.
Robert G. Pine, of Newark, N. J., has ap plied for a patent for an apparatus for plating which is worthy of attention. He places the article to be plated upon an elastic bed and within a female die, constructed of sheet met al, and corresponding in its form to that of the article in hand. Directly above the bed is a male die. This is forced down, while heated upon the article, so as to fuse the solder. Th foil is placed directly over the female die, and is united to the surface intended to be plated by the male die's pressure, facilitated by the heat, which is an indispensable agency in this important and profitable process of the art o embellishment.
[The above is from the " O .S. Gazette,"' them on a silk thread in such a manner that

