

（For the Scientifc American．） Dendrology．

There are many professed naturalists who can give a name to every tree as it stands in the forest，and yet cannot distinguish one from the other when cut into timber；and there are nearly as many mechanics who are excellent judges of timber，but are unable to tell one tree from another．A few words on the prominent characteristics of the most common woods＇may not，therefore，be inappropriate．

Asir．－Leaves about a foot long，often made up of 7 leatlets．Flowers，paniculate，appear ing in May．Wood is light，durable，tough， elastic，permanent，splitting with a straight grain．Grows in United States and Canada．

Bass．－Leaves，cordate， 4 by 3．Flowers cymose，appearing in June．Wood is fine grained，light，soft，white，clear，and flexible． Grows in Northern and Middle States．
Beech．－Leaves，alternate，lanceolate， 4 by 2．Nuts，ovoid－triangular．Bark，emooth，light gray．Wood，fine grained，red duramen，white alburnum．Buds in May．Abounds in New England，and Western States and Canada．

Brach．－Leaves，alternate，ovate，serrate， 3 by 2．Buds in April and May．Bark，lami－ nated．Wood firm，compact，takes good po－ lish．Abounds in Eastern and．Middle States．
Butternut．－Leaves alternate，pinnate，form－ ed of 7 or 8 pairs of leaflets．Buds in April and May．Branches horizontal．Wood red－ dish and light．Abounds in Eastern，Middle and Western States．Its kindred black walnut is rarely found north of New York．Its heart－ wood is heavy，tenacious，and violet colored， but turns black．
Cebar．－Leaves evergreen，imbricate，squa－ mose．Flowers in May．Wood soft，smooth， light，durable，aromatic．Abounds in swamps of Middle States．
Cherry．－Leaves oval－oblong，shining above， 4 by 2．Flowers in May and June．Bark rough，black，and bitter．Wood colored，com－ pact，fine grained．

Chesnot．－Leaves oblong－lanceolate，with teeth 7 by 2．Flowers in July．Wood coarse， porous，strong，elastic，light，durable，apt to warp．

Elm．－Leaves ovate，serrate，short stalked， 4 to 5 long．Flowers purple，in clusters，ap－ pearing in April before leaving．Wood tough， hard to split．Abounds in the Northern States．

Hemlock．－Leaves evergreen，linear，in rows．Cones appear in May．Branches brit－ tle．Wood soft，elastic，coarse．Abounds in Northern States and Canada．
Hickory．－Leaves ablong－lanceolate，on long stalks．Flowers in April and May．Bark shaggy．Wood elastic，compact，heavy，tena－ cious，warps．
Maple．－Leaves 5－lobed．Flowers suspend－ ed，appearing in April．Bark light gray，scaly． Wood strong，compact，smooth．Soft Maple bears yellowish green flowers．

Oак．－Leaves lobed．Flowers in May．－ Bark white．Wood strong，durable，coarse grained，warps．Abounds in United States and Canada．Red oak leaves are sinuate－lobed， wood reddish．Black oak bark deeply furrow e．J．
Pinf－－Leaves evergreen，acerose in pairs． Flowers in May．Bark smooth．Wood soft， fine grained，durable，resinous，light，homoge－ nous．

Sproch：－Leaves four－cornered，evergreen， straight，half an inch long．Flowers in May． Wood light，elastic，strong．Abounds in North ern States．
Closely connected with the botanical qualities of these trees are their hygrometric properties． The power of absorbing moisture generally va－ ries as the porosity．To show the extent of the meteorological changes an the corresponding expansion and contraction of bodies，a simple method is to cut a thin slip of wood across the grain，and insert into its corners four needles pointing backwards．When set on a table it will crawlalong and thus register the sum of
though kept in a close room，travels more than \mid pheric vapor by stretching longitudinally． half an inch per week．In order to ascertain Their comparative increase is seen in the order the relative absorbing powers of different woods，just given；spruce gaining a quarter of an inch I procured similar slips of the spruce，oak，elm， pine，cherry，chesnut，ash，hemlock，bass，and butternut，which when baked were exactly over butternut．By this hygrometer it may be proved that the amount of moisture in the air eight inches in length．These being fastened till 4 P．M．，and again increases till 9 P．M． at one end，each showed its avidity for atmos－

ZINC PAINT MILL．

Figure 1.
Figure 2.
Figure 3.

Our readers are aware that peroxyd of zinc， generally called＂white oxyd of zinc，＂is now much used as a pigment in competition with， and by many in preference to white lead；this article，of a very superior quality，is imported in large quantities into the United States by ＂La Societe des Mines de Zinc de la Vieille Montagne，＂of France and Belgium．The agent of that company has communicated to us the description of a process for mixing the oxyd of zinc with oil，used in one of the first paint ma－ nufacturing establishments of Paris，which，it
is asserted，combines speed，efficiency，and eco－ nomy．We give it herewith for the benefit of all concerned．

Figure 1 is the mixing mill； A is a hollow cylinder made of sheet iron， 31 inches deep， and 15 inches in diameter；it is set upright．B is a door closing hermetically when shut．C is an axle revolving vertically in the cylinder，A ． D D D D are cross－blades fastened to the axle at a right angle and at equal distances．
Fig． 2 is the roughing mill．E is a hopper or funnel；F F＇are cylinders made of cast－ iron， 40 long inches and 8 in diameter．G G are bearings screwed down to the cast－iron table and frames，H．I is a circular iron plate fast－ ened to，and edging both ends of cylinder $\mathrm{F}^{\prime \prime}$ ． J is a thin elastic blade or scraper pressing gainst the whole length of said cylinder．
Figure 3 is the finishing mill．$L L^{\prime} L^{\prime \prime}$ are cylinders similar to $F F^{\prime}$ ，but set closer and sup－ ported on the same frame．M is a circular edg－ ing placed similar to I ，and set at both ends of cylinder，L．＇${ }^{\prime \prime}$ is a scraper．
By the use of this apparatus 100 pounds of the＇vieille montagne＇zinc require only 12 to 15 pounds of purified linseed oil，while inferiorde－ scriptions of zinc ground in common burr stone mills require from 20 to 30 per cent．One half of the oil is first poured in the mill，A ，and then the oxyd；the mill is set in motion at the rate of 30 revolutions of the axle per minute， and after a short time the remainder of the oil is added by degrees．When the substances ap－ pear to be well embodied together and the paste to be homogenous，the door， B ，is opened and the contents allowed to be driven out by their own weight and the effect of the rotating motion，and are carried into the funnel，E，be－ tween the cylinders of fig． 2 ．
The cylinders， $\mathrm{F} \mathrm{F}^{\prime}$ ，make 30 revolutions per minute，and in proportion as the paint goes through them and falls behind the blade， J ，on the table，H ，it is taken up and poured into the funnel， K ．
The rolling cylinders，$L L^{\prime}$ ，have the same motions as $\mathrm{F} \mathrm{F}^{\prime}$ ；cylinder $\mathrm{L}^{\prime \prime}$ makes 60 revo－ lutions per minute；all these cylinders movein the various directions marked by the arrows． The apparatus must be contrived so that the proximity of the rollers may be increased or decreased，according to what may seem best It might be an imppovement＇to it if the three
void the labor of ladling the puint from the one to the other．
As described，it ocçupies a space of about 36 feet superficially，and can grind 2600 pounds of paint per day with a power of less than two horses；its first cost in Paris is about $\$ 800$ ．
The zinc paint mixed by thisprocess is per ect in body；it contains no grit or clots，and has a creamy appearance，which is well appre ciated by painters．
Any further information which may be de sired can be obtained by addressing F．Milli roux， 33 Broadway，New York．

Bronze Colors．
Bronze Colors from Brazil and Logwood Suitable for Paper Strrainers－If some alum be dissolved in a hot decoction of Brazil wood，which has been previously allowed to clear itself by standing some days，a precip tate will form on the liquor cooling，which will gradually increase if it be set aside，and will contain nearly the whole coloring matter．If
this precipitate be once washed with water，and this precipitate be once washed with water，and tiful brilliant golden color，tending somwhat to green，resembling the wing－cases of dried panish flies．If a little of this precipitate，in the condition of paste，be mixed with size and some satining．materials（formed of wax disso red in soap），and then rubbed with a brush upo paper，it may be polished with an agate，or glass ball，upon which it will assume the beautifu yellow metallic lustre，very similar to bronze． To obtain this effect，it must be laid on so thick as to be perfectly opaque．
Similarly，a bronze color may be made from logwood；but the preparation is different，and the color is more like that of copper，whilst the former approaches to brass．If a fresh prepared decoction of logwood be heated in a copper pan，then precipitated with chloride of tin（tin salt），a rich dark brown precipitate will be obtained．This precipitate washed and treated as the last，communicates to paper copper bronze．A different shade may be ob－ tained by adding to the hot decoction of \log－ wood a little alum，and thẹn decomposing it with a still smaller quantity of red chromate of potash．This precipitate is darker，tending more to yellow than the latter．

Paper from Wood．

At the lait sitting of the Societe d＇Encour agement pourl＇Industrie Nationale，of Paris，a paper was read setting forth a plan for makin paper from wood．The bark is taken off th wood，and the wood cut in such away as to be easily made into shavings；the shavings are then cut very thin；next they are placed in water for six or eight days，then dried；after－ wards they are reduced to the finest＇powder possible by means of a corn mill．This powder is then mixed with the rags which serve to pre
eration of paper－making is proceeded to．All white woods，such as the poplar，the lime，and the willow，are suitable for the purpose，but the discoverer ascribes a good deal of his suc－ cess to the quality of the water he employed that of the little river Dollar，which runs nea the Mulhouse．For the first experiment he employed the wood of the trembling poplar， and he presented specimens of paper from it．

A Grain Fleet

The＂Chicago Journal＂of Wednesday week records the departure of quite a fleet of ves－ sels from that port，all loaded with grain，for Buffalo and Oswego．The fleetnumbered nine teen vessels，（three barks，six brigs，and ten schooners，）having oh board 260,120 bushels， of which 208,332 bushels were of corn， 32,939 bushels of wheat，and the balance barley and oats．Of the whole quantity over 213,000 bushels went to Buffalo．

HTEKARY NOTICLS．

Manufacturers and Inventors \triangle new volume or the \triangle new voluar of the
SCIENTIFIC AMERICAN is the BEST PAPER for Mechanics and Inventors pub ished in the world．
Each．Volumecontaing 416 pakes of most valuable read
©OO MECHANICAL ENGRAVINGS
f NEW INVENTIONS．
cer The scientific americanis a Wbinlifjour
arts，sciences，and mechanics，
having forits object the advancementof the
interests of mechaniog，manofacturers and inventors．
Each Number is illustrated with from FIVE TO TEN ORIGINAL ENGRAVINGB
of NEW MECHANICAL INVEENTIONS，nearly all of being Hilustrated in the Scientific American．It also contains a WERELY LIsT of AMERICAN PATENTS：－
notices of the progress of all MECHANICAL AND SCI－ Iotices of the progress of all MECHANIDAL AND SCC
ENTIFIO IMPROVEMENTS ；practicaldirections on th Cossrrocton，MAMAOEMEST，and Usir of all kinds of IACHINERY，TOOLS，\＆c．\＆c．
It is printed with new type on beautiful paper，and be－ end of theyear．of a $\angle A R G E$ VOLOME of 416 PAGES illustrated with upwards of500 MECBANICAL ENGRA VINGS．
The Scientiflc American is the Repertory of Patent In．
ventions：a volume，each complete in itself，formi an En ． oyclopedia of the useful and entertaining．The Patent laims alone are worth ten times the subscription price osivery inventor．

TERMS！TERM8！：TERMB！：

TERM8！TERM8！：TERM8！！！	
One Copy，for One Year Six Months	88
Five copies， 80 r Six Months	${ }^{4}$
Ten Oopies， For 8ix Months	4
Ton Oopies，for Twelve Months	${ }^{15}$
Fifteen Coples for Twelve Months	${ }^{23}$
Twents Ooples for Twelve Months	93
M Mone	

Letters should be directed boot paid) to
MONN $\& 00$.
Ms Fulion street. New York

$\cdots=$

[^0]
In the world

of $t h$
TERESTS of mechanics, mandfactorers
AND INVENTORS.
is illustrated with from danp and dry weather．The one I have

[^1]\square
\square

\qquad

\qquad

[^0]:

[^1]:

