Scientific ${ }^{\text {ghtlusemm. }}$

Photographs on Steel Plater

The following are some statements which were made at a meeting of the Academy of Sciences, in Paris, on the processes of Mr. TalSciences, in Paris, on
bot, and M. Niepce de St. Victor, respecting the invention of photographic images on steel plates:-"The processes of these chemists are different. Mr. Talbot uses, for the substance impressible to light, a mixture of gelatine and bichromate of potash, which is modified and browned on the immediate contact of light, and only where the light acts, whilst the part corered by the object to be copied remains untouched, and may always be removed by water. M. Niepce has aimed to perfect the process which his uncle, the inventor of heliography, described in the year 1827. The sensitive substance is a solution of bitumen in essence of lavender, applied in a layer; this varnish changes its properties while under the action of light. The parts exposed to the sun become insoluble in a mixture of essence of lavender and oil of petroleum, so that they may be easily separated from the soluble part not impressed, which represents the image to be reproduced. The liquid employed by Mr. Talbot for biting in on steel, after his design, is bichloride of platinum, and that of M. Niepce, a mixture made of one part of nitric acid, eight parts of distilled water, and two of alcohol."

Lithographic Photography.
In a recent sitting of the "Societe d" Encouragement pour'l Industrie Nationale," the process of reproducing photographs by means of lithographs was thus described: An ordinary lithographic stone is taken, and a solution of pitch is placed on it. A negative photographic proof is then put on it and is pressed upon the stone for a period which may vary from ten minutes to four or five hours. The stone is then washed with pure ether. The figure is found properly marked with its lights and shades, and it may be inked and printed from as an ordinary lithograph.-[Exchange.
[This account is very unsatisfactory; as it does not describe the mode of placing the photographic image on the stone.

```
Price of Scents.
```

Piesse, in his annals of chemistry, says:" The wealth of England is aptly illustrated by showing what Britannia spends, and the duty she pays to the Exchequer, for the mere pleasure of perfuming her handkerchief. As flowers, for the sake of their perfumes, are on the continent principally cultivated for trade purposes, the odors derived from them, when imported into this country, in the form of essential oils, are taxed with a small duty of 1 s . per pound, and is found to yield a revenue of just $£ 12,000$ per annum. The dufy upon Eau-de-Cologne, imported in the year 1852, was, in round numbers, $£ 10,000$, being 1s. per bottle upon 200 ,000 fiagons imported. The duty upon the spirits used in the manufacture of perfumery at home, is at least $£ 20,000$, making a total $£ 42,000$ per annum to the revenue, independent of the tas upon snuff, which some of the ancient Britons indulge their noses with. If $£ 42,000$ represents the small tax upon perfuming substances for one year, ten times that amount is the very lowest estimate which can be put upon the articles as their average retail cost. By these calculations (and they are quite within the mark), we discover that Britannia spends $£ 420$, 000 , (about $\$ 2,000,000$ a year in perfumery."

acrease in the Use of Gutta Percha

In the year 1844, two hundred pounds of a new species of gum were shipped from Singapore, India. It was considered doubtful at the time whether the gum could ever be rendered sufficiently useful to mankind to become an article of commerce. The experiment, however, succeeded. More than twenty thousand pounds were exported in the succeeding year. The fame of the article spread North, South, East and West ; men, women and children were employed in its collection, and the new trade has increased in magnitude and extent with every successive year.

Improvement in Exhasusting Steam.
-
ports on the valve seats of steam engines, and in adapting the valve to these ports, so as to exhaust steam from one end of the cylinder with much greater rapidity than it is admitted at the other; all of which is accomplished by the same motion with a single slide valve; this diminishes the resistance of the exhaust steam, and increases the power and speed of the en gine. The steam chest is constrticted in any of the known forms, and is represented here by D, in figs. 2 and 3 . On it is placed a slide valve, A. fig. 1. No change is made in the size or form of the steam port, G, in common use,
Figure 1.

leading from the cylinder to the seat of the the piston of the engine from all resistance to steam chest until it reaches the seat. The port, the action of the inlet steam. On the face of F , is there enlarged in the seat until it is equal in the seat, D , fig. 3, that portion of the opening capacity to twice the steam port, G. It is continued of this size to the surface of the seat of the steam chest, B and E, in figs. 2 and 8 . The valve, A, in fig. 1 , is madein any of the known forms, and it is moved by the common eccentric motion, except that the shape of the valve is altered, so as to adapt it to the form of the
opening in the seat. The valve motion is then arranged, so that it will open only one half the port, F, for induction E, and the other half for duction, B. The object is to exhaust the steam

Figure 2.

as possible, just widening it enough to make of the cylinder, thereby dispensing with the the eduction opening, B , equal in capacity to necessity of giving lead to the exhaust, thus the induction opening, E.
By this arrangement of steam ports, the in- ing of the stroke, securing the greater benefits ventor is thereby enabled to exhaust the of expansion, and an increase of speed and steam from the cylinder, with an increased speed, just in the ratio the opening B, bears to The exhaust port, C, figs. 2 and 3, is made the opening E, in a line parallel with the length in the common form, sufficiently large to con

Figure 3.

duct off the steam as fast as it escapes through without impairing its advantages. the eduction port, B , and it is of a shape to This improvement deserves general attention suit the other portions of the seat and the valve It comes to us, also, recommended by some of and its action. If deemed expedient, however, the best practical engineers in our country. in the working of an engine, any amount of For further particulars respecting it, address lead and lap may also be given to this valve, Joel B. Warner, Esq, Reading, Pa.

Sofening of the Brain.

The cases of softening of the brain, which have of late years become so frequent, rende that disease one of important and interestin medical study. Dr. Albers, a European physician, of celebrity, states that he has dissected the brains of several persons who had for many years undergone great mental labor, and that in all these he found the cerebral substance unusually firm, the gray substance as well as the convolution being remarkably developed. I several of these instances a settled melancholy
had taken possession of the mind during the
latter period of life. He believes, therefore that to produce a softened condition, some ad ditional infuence beyond mere over-exertion i required.

Effects of Soda in Steam Bollers.

Some time ago you published Dr. R. Fresen ius' discovery of the use of carbonate of sod to prevent the incrustations in steam boilers, in which water is used that contains sulphate of lime. Dr. Zimmer, of Frankfort, in whose chemical works the soda for this purpose wa
by corrosion after the soda had been used for some time. From his investigations all soda contains more or less cyanide ot sodium; he is of the opinion that the cyanid is the cause of this corrosion.
"Dr. R. Bottger cautions against the use of soda for the above purpose, saying that according to repeated tests, all soda, even from the most celebrated manufactories, contains cyanid of sodium."-[From Dr. R. Bóttger's Polytech. Notezblatt.

The "Baltimore Patriot" says the amount of guano which will be imported into that city the present year, will probably reach 60,000 tons, costing three millions of dollars.

Manufacturers and Inventors. \triangle new volume or thes SCIENTIFIC AMERICAN is commenced aboutethe30th September, each year, an
is the BEST PAPER for Mechanics and Inventors pub. lished in the world.
EachlV Voume corlataina 416 pages of most valuable read.
ing matter, and is.ilustrated with over 500 MECHANICAL ENGRA VINGB I NEW INVENTIONS. KAL of the arte, sciences, and mechanics, having for its object the adivanoement of the INTERESTS OF MDGHANIOS, MANOYAOTURERS and inventors.
Each Number is illustrated with from PIVE TO TEN ORIGINAL ENGRAVINGB of NEW MECHANIOAL INVENTIONS, nearly all of being 1 ustrated in the Bcientific meric n. It also cont ins a WERELY Lss of AMBRICAN PATENTS:notices of the progregs of all MECHANIOAL AND SOI.
ENTIPO IMPROVEMENS ENTIPTO IMPROVEMENTS ;practical directions on the
Cosstructor, MANAGenEAT, and OBE of all kind of MAORNERY, TOOLS, \&o. \&o.
It is printed with new type on beautiful paper, and being adapted to binding, thesubscriberis posgessed, at the end of the year. of a LARGE VOLOME of 416 PAGEBE VINGS.
The Scientific American is the epertors of Patent In. ventions: a volume, each complete in ifeelf, forms an En-
cyclopedia of the useful and entertaining. The Patent Casims alone are worth ten times the rubsoription price to evers inventor.

> TERMS! TERM8! : TERMS!

> | One Copy, for One Year |
| :---: |
| Bix Month | Five copies, for Bix Months Ten Oopies,for Six Months

Ten Oopies, for Twelve Mont Ten Oopies, for Twelve Months
Fiftean Copies for Twelve Monthi Twents Oopies for Twelve Months Southern and Western Money taken at par for Sub. Lottors, or phe be Letters should be directed (post paid) to

> 128 Puitas street. New York

