Imponderable Agents...-No. 9.: [Second Series.]
Polarization of Liget-Various mechanical arrangements have been invented for the illustration of this remarkable property of light ; the polariscope of M. Biot, introduced in 1824, i perhaps the best of its kind. The annexed flg. ure will explain this apparatus. Δ, is a frame containitg a number of plates of glass placed parallel with each other, and termed the polarizing glass; it is swung on two side pillars, in the fashion of a mirror. The tops of the two side pillars carry a circular ring of wood, в into which is loosly fitted a moveable upper circular disc of wood, with a central opening. This upper disc again carries two light pillars, supporting a second frame, c, containing a sheet of glass, painted on the back with lamp black, termed the analyzing glass. The upper wooden ring has an index placed opposite to the middle of the analyzing glass, so as to point to graduations on the outer or lower ring, в. The substances to be submitted to the action of polarized light are placed over the hole in the upper ring, by a small disc of glass forming a supporting stage.

To show the difference between polarized and common light, the polarizing and analyzing glasses are set with their faces parallel to each other, as represented in our flgure, and a ray of light, whose angle of incidence is 56°, is allowed to fall upon the polarizing plate, so that it may be reflected to the analyzing one above.Supposing, now, that the analyzing plate is turned slowly r ound, the reflected light upon it will become gradually fainter, until it has been turned 90°, when the light will be barely visible. If the motion is still continued onwards, the light will again become brighter until it reaches the opposite 90°, at which point its intensity will be the same as at frst. At 0°, and at 180°, the intensity is greatest; and 90° and 270°, it is least. If we suppose the polariscope to be placed with 0 , pointing to the south, it follows that when the north or south side of the ray, reflected from the polarizing plate, is towards the analyzing plate, the plate reflects it as a common light; but when the east or west side is nearest the analyzing plate, it is incapable of reflecting the light, and at the intermediate points different degrees are reflected, showing the difference existing, between polarized and common light. So far as we at present know, light, in polarization, undergoes no other change than such as is caused by reflection ; therefore we come to the conclusion that light is polarized by reflection from glass at an angle of 56°, water $52^{\circ} 45^{\prime}$, and so on according to the substance used. The fact of the refusal of polarized light to be reflected from the surface of a transparent substance, when it is incident of an angle of 56°, and that it is the same in two positions at right angles to each other, is a clear test of polarization.
The laws of the polarization of light form a distinct science of vast extent and beauty ; for, though this property (first observed by Newton) was never experimented on till the present century, yet during this short time discoveries have thickened, and have led, step by step, to higher and higher generalizations, till at length
enabled, by a magniffcent theory, to bring all these complex and wonderful phenomena under the simple laws of mechanics.
Perhaps the most important rule respecting polarization is, that light coming directly from a source, as the sun or a candle, never possesses this property, while that which has been reflected always possesses it more or less. It is very singular that a ray once polarized retains that property during all its subsequent course, wheth er that be for inches, miles, or billions of miles. Thus, with no other apparatus than a fragmen of a crystal, we may examine the polarizing ef fect of the far distant surface of the planet Saturn as readily as that of the page before us. We may ascertain whether a star at the out skirts of the visible universe shines by its own or by reflected light. In this way Arago has proved that, in some of the binary systems, the two stars are two suns, while in others the smaller is only a vast planet reflecting the light of the larger. In this extraordinary observation we cannot fail to be struck with the great disproportion between the means of observation and the fact observed,-and especially with the astounding universality of this agency, light, which at once pervades galaxies and penetrates between atoms.

We have presented no small amount of information on the polarization of light, because it is a subjectnot generally understood. Although these articles might be extended to a great length, we do not deem it prudent to occupy much more space with them at present, we wil therefore conclude the series, in our nest num ber.

Agassiz on the Races of Man

We give the following from the Boston Traveller's report of Agassiz's lectures, delivered at Lowell, Mass.:
We next come to ${ }^{*}$ geographical distribution of the races of man; and here we must leave out of consideration all question as to the unity of the races. Profossor Agassiz is conscious that his views, on some points, are not generally received, and he fully respects the motives which make the views of others almost sacred to them. He hopes that his views will be re ceived in the same spirit as he represents them, viz: in the effort to arrive at truth.
We will first study the limits of the range of each race on the different continents, and must consequently eliminate every element depending upon migration, as the present American races. We are to consider the primitive location of the races, that is, the distribution of man as recognized by the earliest traditions.The question is, where the race was originally placed, rather than what are the modern changes in their distribution.
The flrst race to be considered is one peculiar to the Arctic regions, a race different much from any inhabiting the temperate zone, and still more from those of the tropics. This race comprises the Esquimaux of this continent, the Laplanders of Europe, and the Samoydes of Asia. They are all characterized by a broad face, short in its vertical diameter, a low forehead, and great length of body, when compared with the shortness of the legs. For more minute descriptions the works of Pickering and Prichard must be consulted. The distribution of the races correspond nearly to the zoological regions of the north.
The races of temperate zones are three.The Mongolians in Asia, the whites in Europe, and the aborigines in America; and it is re markable, also, that these races occupy the same territories as the faunas previously described. In Asia has been described the terrestrial Japanese fauna, the insular Japanese fauna, Chinese fauna, and the fauna of the Cas pian regions, intermediate to that of Europe and Asia. Inhabiting precisely the same countries, are the Japanese, Chinese and Turks.
The Indians of North America are a distinct race, (on this point Prof. Agassiz disagrees with Dr. Pickering, differing from the races of the Old World, as the inferior animals of North America differ in species from those of the Old World. It is only within a few years that the animals of North America have been considered not to be identical with those of Europe. The aboriginal Indian race is identical, from the Arctic regions to Terra del Fuego, the only dif
ference being one of tribes, not of races. These
tribes are divided into an infinite number of tribes are divided into an infinite number of small tribes, a fact perfectly in accordance with the distribution of the inferior animals upon this continent.
We have seen that a great Mountain chain, extending from the Canadas to Patagonia, connects North and South America, and produces certain uniformity in their faunas; that their faunas are sub-divided into those of:the Pampas, the Antilles, the Andes, the Southern States, the Middle States, the Canadas, the table land west of the States, and those of Oregon and California. In the same manner the aborgines re sub-divided into a large number of smiall ribes, which are circumscribed within inarrow imits. They form no great nations, as do the Chinese, Tartars and Japanese of the east.
The Caucasian race is widely distributed and divided into many nations. Those inhabiting he eastern part of Africa, the northern part of Arabia, Mesopotamia, Asia Minor, \&c., all contitute different nations, with different languag s. The Teutonic branch, including the Ger man, Dutch, English, Danish, \&c.; the Sclavon an branch, including the Russian, Poles, \&c. each have a nationality and language peculiar to themselves. But they all have a feature in ommon, viz: a noble expression of the face bove that of all other races, a mirror of the in nermost movements of the soul, and it is this branch, also, which is capable of the highest moral culture, and the highest degree of civilization.
Africa has one characteristic race-the negro But the interior of the great desert, Nubia and Abyssinia, have races different from the negro The Hottentot lives at the aouth, and the western shores have their peculiar tribes. It was possible, even, during his recent visit to the Southern States, to recognise among the negroes those belonging to these several African ibes.
In the East Indies are three distinct species he Malay, Telingan, and Negrillo, (like the ne gro, only dwarfish.) The Australian is a tribe peculiar to that country. The features are those of the negro, but the hair is straight and flowing. The inhabitants of Madagascar are a peculiar tribe, but our information concerning them is scanty. They are not negroes, but resemble more the inhabitants of the Sandwich Islands.
With these facts before us we can assert that here is a law of distribution of the human race, as well as of the inferior races, and that these laws are in accordance with each other.

The Island of Iceland.

The Island is divided into four districts, or Fiordnungs, which are administered by deputies. The ancient laws of the country are still chiefly used; but the law of primogeniture is ot known:, and land is held either in fee or under long leases from the Crown. The island ppears to have been once covered with_forests, wich are, however, now nearly extinct; only few dwarf birches and willows are seen, but no trees, and the people are dependant for fuel upon turf or peat. The poorer people suffer much from the severity of the climate and leprous disease, induced by the dirtiness of their habits, and the coarse unwholesome food on which they subsist. Their chief occupation is fishing and raising herds of cattle. In дumber they have greatly diminished; once there are said to have'been 100,000 souls in the island; at present, however, the population is supposed not to exceed 48,000 persons. As a people, they are of mild, honest, and religious disposi tions, and remarkably well educated, much su perior knowledge being found among them which, considering the poverty of the country, is worthy of note. Parents, assisted by the parish priest, are the chief instruments of edu cation, the latter acquiring their means of teach ing at a sort of college, or high school, at Bes sasted, in the peninsula of Altanese. The Icelandic dialect, is (as well known) a variety of the great Indo-European family of languages, and belongs to the Scandinavian sub-division An excellent grammar of it has been published by the celebrated Danish philologist, Professor Rask, who lived in Iceland for three years.
This dialect is called by the natives, "Isengka-
their cultivation of literature, and the skalds, or the poets of the island, have obtained a European celebrity. Many, however, of the oldest
songs have been oral, and, having never been committed to writing, have now perished.

Steamboat Inspection.

In November last the Supervising Inspectors f Steamboats, appointed under the Act of Au gust 30th, 1852, met in convention at Cincinnati, and the report of their doings has just een published. It contains the following statistics of the several districts.

LOCAL DISTRICTS.

FIRST DISTRIOT.
Portland,

Boston,

$\begin{array}{llll}16 & 16 & 11 & 3,491\end{array}$
New London

20	24	19	8,568
16	18	7	4,926

New York,
$\begin{array}{rrrr}135 & 161 & 365 & 52,229\end{array}$ $\begin{array}{lrrrr}\text { Philadelphia, } & 36 & 60 & 80 & 14,560\end{array}$ third district.
Baltimore, Norfolk, Charleston Savannah,
fourth district New Orleans, Mobile, $\begin{array}{lll}102 & 333 & 26,100\end{array}$ $\begin{array}{llll}24 & 102 & 107 & 4,800\end{array}$ California and Oregon, (not organized.) fifth district.
t. Louis, $\begin{array}{llll}83 & 302 & 254 & 27,712\end{array}$
Memphis, \&c.
SIXTH DIETRICT.
Louisville, $\begin{array}{llll}72 & 170 & 263 & 19,758\end{array}$ Nashville, $\begin{array}{llll}14 & 70 & 83 & 8,401\end{array}$ SEventh district. Pittsburg, $\begin{array}{llll}83 & 148 & 184 & 18,392\end{array}$ Wheeling, $\begin{array}{rrrr}24 & 44 & 76 & 5,724 \\ 81 & 248 & 214 & 22,000\end{array}$ Cincinnati, $81 \quad 248 \quad 214 \quad 22,000$
EIGHTH District.
Chicago, $\begin{array}{llll}8 & 30 & 39 & 5,321\end{array}$
Detroit, $\begin{array}{llll}32 & 53 & 53 & 19,518\end{array}$
ninth district.
Buffalo,
Cleveland,
Cleveland, Oswego, Burlington,

Total, $\begin{array}{llll}40 & 99 & 86 & 85.600\end{array}$ $\begin{array}{lllll} & 7 & 16 & 11 & 6,700 \\ \text { Burlington, } & 7 & 14 & 14 & 4,600 \\ & 7 & 4 & & \end{array}$ $\overline{882} \overline{2028} \overline{2448} \overline{317,968}$ Lubricating Oils.
Messrs Edicors.-In my report upon the test of lubricating oils, published in No. 19 of he "Scientific American," instead of "Devlin Co." I should have written "Delavergne \& Yockney," manufacturers of oil under Cumber and's patent. The present firm is Yockney \& Co., No. 67 Exchange Place, New York City. Please rectify my error, and oblige,

Jósefe E. Holmes,
Director of Machinery.
Crystal Palace, New York, Jan. 30, 1854.

A Bafling Illustration.

At one of his lectures, Dr. Boynton related hat, wishing to explain to a little girl the maner in which the lobster cast the shell when it has outgrown it, he said, "What do you do hen you have outgrown your clothes? Throw hem aside, don't you?" "Oh, no," replied the little one, "we let out the tucks?" The Doctor confessed that she had the advantage of him there.
\qquad
Railway Trallic in England for 1853.
From the traffic returns for the past year the total amount appears to be $17,180,530 l$., on 200 miles of railway, being at the rate of $2386 l$. per mile.
A good cement for luting the joints of steam boilers, piges \&c., is made by mixing equal parts by-weight of red lead and black oxyd of manganese in linseed. oil, to render it of the proper consistency.

[Reported O\#fcially for the Scientific American.]
List of patent claims Iosued from the United states Patent offce por the weri ending january 28. 1854.

 the embossed or other raised figures and ormamente wiil
not be obscureo or iniured during the process, mhithat
the same time a superior quality of work is produced, as
set forth. the same
set forth.

 loper or buffed, the vise constructed as described, and
operaing by holding the bent edge of the plate between
its jaws.
 ing device; nor do I claim the knife or the wheels seI claim the combination of the knife with the wheels,
:or the purpose of cutting up the ground and destroying
thistles or any other weed. plants, or grasses therein.

FoonvinN Pxs-By Wm. Cleveland, of Orane, N. J.
I do not claim the employ ment of capilary action to
supply the ink to the pen except when used under an supply theink to the pen except when used under an
arrangement and combination, connisting in the em.
ployment of the leading stem oo tred in the deivery
aperture that it shall lead the ink down on one side of ployment of the leading stem so fixed in the delivery
aperture that it shall hed the ink down on one isido of
the aperture and allow the air to enter the other, as set
forth.

 the alloy surrounding it and the adjus table connecting
box, arranged and operating as described.
[See engraving of this invention on page 52 ofthis ro[See engraving
lume, Sci. Am.]
Corron PRRssgs-C. J. Fay, of North Lincoln, Me.: I
claim the use of the slats or guide strips, arranged as Corron
claim the
sot forth.
SAW MuLs-E. W. Johnson, of Perth Ambov, N. J.: I
claim the arrangement of mechanism for driving two claim the arrangement of mechanism for diving two
sams or ang of sams, and placing the whole upon the
bed plate, as set forth.

 or floats, projecting in oppoo
ingor passage arranged be
back water, as described.

QUARTC CRUsRRRS-T. O. Cutler, of Jersey City, N.J. J.
I claim the employment of bals to act by centrifuga
action due the their rotation about a common center. as

 reason of its
risit tobe gro
as specified.

 ed as described. soas to bevel the opposite ed ges of skelp
plates of different widths on opposite sides of the same.
 operated by a pistrin in a ste the cylinder, when the ham
mer ivalonected rigidy to the team ai that twould be
equivalent to what is know as the helve "team ham-
mer.

 [This is a good improvement. See notice on page 20 .
this Volume.]

 And I claim also the employment of co-operating elec.
tromagnets or armatures, in combination with axial
bars, helices, and catoff, or its equivalent, substantially
as set forth.،

Lastly. construct. set forth.

construction claim the employment of sauare wires in the
set forth.
[This invention for electromagnetic purposes, as [This invention of Dr. Page is publish
VoL. 7, Sci. Am., with a full description.]
 caw York city I I claim the use of the double tubular
cand in combination with the everor having aloat at one
ent working in one of the tubes, and a compensating end working in one of the tubes, and a, compengating
plater equavalent device, at the other, working in the
opposite eube, for the purpose ser forth,
Paiso claim the use of the lever having a float at one

 forth.
 burg, Pa.: Ido not claim the use of : he describedmate-
rials, in combination, as apaint or ocmposition that may
be forcedinto the surface iron
But I claim incorporating, as described, solid carbo

 cloth carpets or other fabrics by the combination and
arangement of sectionsortype. such as described by
which an endless tariet of pattern may bepoduced
rom the same sections variously disposed, at a compar. from the same sect
atively small cost.
CARPRT BAGS-FT, J. Thring, of New York Citp: I claim
constructing the carpetag with itt top and botom of
equal or nearly equal widths, and arranging round its

 tallic frame
being oontr
ner specified.
 ing successive numbers, the cylinder being oveved la.
terallig finle it revolves by means of a screw on the
end of its shatt, as described. 1 also claim the right to use any n
on a single machine, as setiorth.
STBAM HAMMBRA-P. L. Weimer, of Reading, Pa.:
make no claim to bieing the origina or or not admitting
steam into the cylinder unilater the hammer has

 ed by the blow of the hammer.
But claim the the arrangement of the togsle, the catch,
twoarms. the weightand shaft. for the purpose of open.
ing the valve admitting steam into the cylinder trom ing the valve adomititig steam into the cylinder irom
the concoussion or sting of the anvilin its bed, caused
by the force of the blow of the hammer.
 with the breakers, as described, so that said breakers
mayremainstationary whilehunnin and revolve with
the dashers to collect the butter, as described.

a grove ei.
of the time the arrangement of the sustaining grove
of the sping in the socket, ins fead of in the shank, so of the spring in the socket, ins sead of in the shankl, so
that when the shank is being drawn out of the socket,
or when it within or out of the same the spring will
remain in the socket.
 shank bereling, as described, the said flaye on the side
of the groove and the top rendering the shank capable
of being detached from or at tached to the socket. Re-ISSUE.

Care of the Eyes.

Dr. Dafter says: "So many women complain of weak eyes, that we have thought it wise to give some directions as to reading and writing, by which the sight may be preserved uninjuried. Observe then, that the light should never be allowed to fall on the paper, or on the eyes of the reader, or writer, but the left side; for then the eyes are not annoyed with the shadow of the pen, as will be the case, when the light comes from the right side. That writing tries the eyes more than reading is a popular error; and, in writing, blueish paper is better for the eyes than pure white. When the eyes feel fatigued, bathing them in cold water will both strengthen and relieve them. In reading great relief will be found if the eyes are turned from the book to some soft and harmo-
nious colors. Brilliant colors, therefore, in paper or paint, should not be chosen for a library or sitting-room, where either reading, or writing, or sewing is going on. For sewing, that peculiarly feminine employment, is quite as trying to the eyes as study; and fine sewing at night is really very injurious, and should be a voided if possible. Generally the eyes should be used, in all these occupations, as much as
can be in the morning. Ground glass shades, at night; are bad, as they deaden the light too
much; the common paper shade, which concentrates the light downward is better."

The Precious Metals.
Toughening Gold.-Wolf proposes, in the Practical Hand-book for Jewellers, to fuse the brittle gold in a new crucible, and when melted to throw in one or two pieces of sulphur of the size of a pea, to shake the crucible a little with the tongs, and to cast it rapidly into a heated mould. He also proposes to render small pieces malleable by coating them with powdered borax, and heating them in the blowpipe flame, until the surface commences fusion. Both of these methods are resorted to at the United States Mint, but the choice of either depends upon the nature of the accompanying metals that give the gold its brittle character. When there is a quantity of iron present, the gold is fused with a mixture of sulphur, potash, and soda, which will remove it by making the very fusible mixture of sulphurets of iron and alkali. If tin, arsenic or antimony be present, a good flux is a mixture of borax, soda, and saltpeter, the last for oxidizing the foreign metals into their respective acids, the soda to give base to those acids, and the borax to collect the slag. In both these cases a sand or clay crucible is preferable to a black-lead pot, in which last the graphite acts reducingly. Where lead is present this proces may partially effect its removal; but it is more completely effected during quartation and by washing the fine gold thoroughly with hot water, after extracting the silver by nitric acid. Another method of removing lead would be to fuse the gold with a little saltpeter, borax, and silica, whereby a fusible slag of oxyd of lead would result, and might be skimmed from the surface of the gold. Palladium and platinum, not unfrequently present in California gold, are also rem ved by the nitric acid in parting silver from gold. Grains of iridosmin have been observed in California gold, in distinct particles, even after three or more fusions, and seem to have no tendency whatever to enter into an alloy; but, whilst casting such gold, these paticles collect at the bottom of the pot, from their greater specific gravity, and, by remelting in a small crucible, and carefully casting, they may be obtained mixed with a small quantity of gold. The latter is dissolved by nitromuriatic acid, and the iridosmin obtained pure.
Platinoid Metals.—Platinum is associated with several other metals in the platinum sand which is tound in some gold-districts.They have not been found as a distinct deposit in California, but have been observed in the United States Mint in the operations of assaying and parting. These associated metals are palladium, rhodium, iridium, and osmium, to which we must add the lately discovered metal, ruthenium.. They have a sufficient resemblance to be classed together, and are obtained by a similarhydrometallurgic treatment. The grains of iridosmin, alluded to under gold, have been qualitatively examined and found to contain the new metal ruthenium, as was observed by Claus in relation to the iridosmin from otherlocalities. Palladium has been observed, and at times in sufficient quantity to render the gold brittle. The quantities of platinoidmetals found in the California gold are small, about $1 \frac{1}{\frac{1}{l}} \mathrm{lb}$ of iridosmin having been obtained from about 25 . tons of the gold, 3-100000, but the greater part has, of course, passed into the coin, the coarser
grains only being left.-[By Prof. Booth in the transactions of the Smithsonian Institute.

French Rivers Breaking up.

The breaking up of the rivers of the north of France, after the late heavy snows and severe frost, threatened to cause great damage, but seems to have passed over without either seri ous collision or inundation. The explosion of the Seine, near the Pont Neuf, as the rising water cracked the frozen crust, was heard boatmen had double lashed their boats, the bathing houses were made fast with huge iron cables, and the washerwomen's rafts were hooked into pilasters and parapets. In forty eight hours the river was clear. The Seine rose
three feet in half an hour, and the current was laden with icebergs that would have done honor to Spitzbergen.

Arsenic Eaters.
The Styrian peasants, says Professor Johaston, eat arsenic as the Chinese eat opium.They eat it for two specifle purposes-to acquire plumpness and freshness of complexion, and to improve their "wind," so as to enable them to climb long steep mountains without dif ficulty of breathing. And, strange to hear,
these specific purposes are attained. The young these specific purposes are attained. The young
poison-eaters are remarkable fortblooming complexions, and full, rounded, healthy appear ances. The peasant, after dissolving a slight particle of arsenic in his mouth, ascends heights with facility which he could not otherwise do without the greatest difficulty of breathing.

Bed Clothes.

Theperfection of dress-day or night—where warmth is the desideratum, is that which confines around the body sufficient of its own warmth, while it allows escape to the exhalations of the skin. Where the body is allowed to remain in its own vapors we must expect an unhealthy effect upon the skin. Where there is too little ventilating escape, insensible perspiration is checked, and something analagous to fever supervenes. Foul tongue, ill taste and lack of morning appetite betray the result.

Amorphous Phosphorus.

Considerable attention has been drawn of late to a variety of phosphorus bearing the above name, which has been recommended for the manufacture of lucifer matches, \&c., both as being less injurious to the health of the work. men, and less apt to ignite on being handled. From the researches of Puttfacken, however, it appears that the substance in.question, although undoubtedly possessing the above valuable properties, is merely a low oxyd of ordinary phosphorus, and not, as was supposod, an allotropic modification.

A Remedy for the Vine Disease. It is doubtless well known to most of our reade ers, that the vineyards of Southern Europe and the Madeiras have been blighted by a microscopic acarus, the "Oidium Tuckeri," and that the prise of wines, raisins, \&c., has been considerably raised. It has, however, been ascertained that the use, of manures, rich in iodine, enable the vine to resist these destroyers. In cer tain districts of Spain, decomposed seaweed are ordinarily used as manure. In those part in which the amount of iodine in the soil may average $1-600000$ the vines have entirely escaped.

California Postage.-Extortion.
We have received many complaints from California respecting the exhorbitant rates of postage charged upon our paper. A subscriber from San Franciso says that he has been charged 75 cents per quarter, postage, upon the Scientific American! We have taken pains to inquire of the proper authorities here, and find that $6 \frac{1}{2}$ cents if paid in advance, is all that can be legally charged. We trust that our subsoribers there will submit to no such extortion.

Strychnine for Panthers.

A farmer in California recently killed a large panther in the following manner :-"The animal attacked his pig-pen, killing a fine hog and eating about half of it. He then anointed the other half with strychine, and left it on the same spot. The ensuing night brought the depredator again to its feast; and the next morning a huge she-panther and three cubs were found extended lifeless on the ground. The animal was of an extraordinary size, measuring six feet from the nose to the root of the tail, and nine from tip to tip.
Glass bottles were first made in England, about 1558. The art of making glass bottles and drinking glasses was known to the Romans in the year 79, A. D.,-they have been found in the ruins of Pompeii.
The most stupendous canal in the world is one in China, which passes over two thousand miles, and to forty-one cities ; it was commenced in the tenth century. A monster work of man.

The largest and oldest bridge in the world is said to be that at Kingtung, in China, where it forms a perfect road from the top of one lofty mou ntain to the top of another.

