Stientific © Cilluserm.

Anatomy of the Teeth

A nerve, an artery, and a vein, enter the root of every tooth; " and all through an opening just large enough to admit a human hair." The dental pulp is the termination of the nerve in the crown of the tooth. In the molar teeth it is about the size of a small shot. Some anatomists call the whole of the nerve the dental pulp.
The ivory of the tooth (that part which lies under the enamel) is composed of an immense number of little pipes, or tubuli, which make that part of the tooth porous. This accounts for the rapid decay of a tooth when the enamal is gone. The acids of the saliva, heat and cold, penetrate these numerous cells and cause a sudden destruction of the tooth. Filling the cavity solid with some metal is the only cure.

- The nerve from one tooth connects with the nerve to every tooth in either jaw. This is the reason why the pain is so often felt on the opposite side from where the cause exists. Pain is often felt in the upper jaw, when the cause ex ists in the lower.
The superior (upper) molar teeth have three roots. They sometimes (not frequently) have four and even five roots, while the inferior (lower) have but two.
The bicuspids usually have but one root, or two united, so as to have the appearance of but one. They sometimes, however, occur with two distinct roots.
The incisors and eye teeth never have more than one root.

Constitution of Butter.

Heintz has communicated an elaborate paper on the constitution of butter, the results of which are as follows:
The margaric acid prepared by Bromeis from butter is *a misture of stearic and palmitic acids.
The fixed fluid acid which is contained among the products of the saponification of butter consists chiefly of common oleic acid, and not as Bromeis believed, of a different acid. There is no butter-olece acid. Butter therefore contains common olein.

Among the products of the saponification of butter there is found a fatty acid, the hydrate of which eontains more than 38 equivalents of carbon to 4 equivalents of oxygen. This acid, butic acid, has very probably the formula C40 H40 O4. It is with great difficulty soluble in cold alcohol, and corresponds to a fat contai ed in butter which may be called butin.

Stearic acid is also contained among the products of the saponification of butter, though not in predominating quantity. Butter therefore contains stearin.
The largest proportion of the solid fatty acids in butter consist of palmitic acid. The largest proportion of the solid fats consists therefore of palmitin.

Concinic acid cannot be detected in butter.
The portion of the solid fatty acids most soluble in alchohol consist of myristic acid. The presence of myristin in butter is therefore to be inferred,
Heintz points out the remarkable fact that in all the acids contained in butter, the number of equivalents of carbon and of hydrogen is divisible by 4. The same law holds good with respect to cocoanut oil. Heintz considers it therefore probable that the cetic and cocinic acids which he detected in small quantity in spermaceti are mirtures, since the numbers of equivalents of carbon which they contain are not divisible by 4 like those of the other acids in spermaceti: he proposes to resume the subject, operating upon 10 lbs . of spermaceti.

Separation of Nickel from Cobalt.
Liebig has found that when a current of chlorine is passed into a cold solution of the double cyanides of cobalt and potassium, the liquid being kept alkaline by the addition of caustic soda or potash, the nickel is completely converted into sesquioxyd and precipitated, while the cobalt remains in solution as unaltered double cyanid. The sesquiozyd of nickle may be washed and ignited, and the nickel
weighed in the form of protoxyd; it is perfect-
ly free from cobalt. The solution after passing
the chlorine must still be alkaline. The smalthe chlorine must still be alkaline. The smal
lest trace of nickel gives an inky black color when dissolved in cyanid of potassium, and treated with chlorine. This method of separating cobalt and nickel has perhaps some advantages over Liebig's second method which, it will be remembered, consists in boiling the mixed double cyanids with oxyd of mercury, which precipitates the nickel but not the cobalt.

A curious contrivance has been lately patent ed by Mr. John Sayers, of Poplar, England, in connection with ship furniture, such as tables and apparatusforsupportingloose articles. With an ordinary table, the sea-going passenger constantly runs the risk of unshipping his teacup, or losing sight of his newly-charged cover at the din-ner-table, from the lurching of the vessel, Mr. Sayers mitigates this evil, by arranging his tables so that their supporting surfaces shall always maintain their horizontal level.
The accompanying engraving represents an end view of a ship's dining-table thus fitted, and placed fore-and-aft. At A are small tables, or platforms, supported at each end on hinge joints, B , attached to the table framing; and to the under sides of these tables, A, are attached the vertical pieces, C , sliding freely through the holes in the fixed top of the table framing, and resting on the ends of the angular suspension pieces, D, beneath. These suspension pieces are carried on hinge pieces, E , fast to the underside of the ordinary table top. From the centre of the suspension pieces, ${ }^{\circ} \mathrm{D}$, arms, F , project downards to carry the weight, G. It is evident that the surfaces, A, which are the supporting platforms for the loose articlesin use, are thus kept at their exact level under all circumstances of the ship's motion, just as the common lamp or compass is sustained as the common lamp or
upon its universal joint.

This is a coatrivance for improving upon the old, ineffective, and very inconvenient system of closing bottles by corking. A screw-thread is moulded on the innersurf ace of the bottle-neck, or opening, at the time of moulding the neck; andintothisscrewed neck is fitted a correspondingly screwed stopper of wood, glass, earthenware, or other convenient material. This stopper is formed with a suitable head to facilitate adjustment, and its entering portion is screwed externally, to correspond with the internal screw in the neek-whilst beneath the expanded head is a groove, containing an annular jointing piese of some soft or elastic material, as gutta percha, india-rubber, canvas, or other substance. In this way, when the stopper is screwed into the bottle, this elastic surface bears down on the end surface of the neck, and preserves a light junction. Such stoppers are easily screwed in and out, whilst they are always present for use, and will last as long as the bottle.
The figure is a longitudinal section of the neck of the bottle, with the stopper in its place. The bottle, having been blown in the usual way, and being separated from the punty, a small quantity of semifluid glass is taken upon the neck to form the mouth, the bottle being held by its bottom end. Theworkmanthere introduces the screw, into the neck, and when entered up to the shoulder, he closes the shears, and turns the bottle round rapidly on his knee, the turns the bottle round rapidly on his knee, the
rotation forming the smooth outitside of the
mouth, whilst the pressure forces the glass into the thread of the screw. The stopper, A, in this view, is formed with an external screw-
thread, corresponding to the internal one in the mouth of the bottle, s ; and beneath the ex panded head is a ring, c , of india-rubber, gutta percha, or other elastic substance, let into an annular groove in the head, and forming a tight joint. Quite an ingenious invention. It is patented in England by Joseph Scott.

Gold Assaying in South America.

The process of gold assaying amongst the na ive miners of South America is very simple. A fragment of quartz is pounded, and rubbed to powder between two pieces of granite. A bullock's horn, of black color, is the only assay instrument. It is cut longitudinally into two equal pieces, partly on the curve, so that one half forms \dot{e}^{\prime} kind of long spoon, the inside of which being polished. The powder being placed in the spoon, the water is poured in it and shaken, and then poured off. A second and a third water being applied, nothing is left but the coarser particles at the bottom, and at one edge of them, conspicous on the black horn, is seen a fringe of gold powder, if gold be pres ent. With a keg of water at his back, and his spoon in his wallet, and a little parched meal the mine hunter wanders among the barren rocks in search of a treasure, which he sells when discovered, and seeks another; the claims of labor being practically regulated by natural aptitudes. The man who buys the mine, digs the ore, breaks it up into the size of wal nuts, loads it into hide sacks, borne on mules and sells it to the "beneficiador," or benefitter in the valley below, who passes it through his mill. Having settled upon a small stream, with a fall from four to five feet, he builds up two walls to enclose it on each side, and a back wall to form a small reservoir, with a spout and plug to let out the water at his plaesure. Ove the side walls, with considerable labor, he con trives to lay a flat circular granite stone, some five feet in diameter, with a hole of some fifteen inches through the middle. The middle of the stone is hooped round with staves, which stand up eighteen inches in the form of a tube. The outside is surrounded with similar staves, so thata water-tight circular trench is formed, with a granite bottom. Through the central hole is passed the straight stem of a tree, shod with an iron pivot, standing on an iron shoe, fast to a block below. The upper part of the tree is steadied in a beam above, supported by two upright posts. Through the middle of thever tical shaft is a horizontal hole, with a horizontal shaft projecting on each side. In this horizontal shaft, at nearly the level of the foot below, are affixed in a circle, like the spokes of wheel, a number of wooden spoons, about three feet in length. To the horizontal arms above are tied, by raw hide cordage, a sort oflarge flag paving stones, with their faces bearing on the flat granite below. The water being turned on the spoons, the paving stones are drawn round by the motion of the shaft, and grind the quartz. An improvement on this is to use two vertica roller stones, eighteen inches thick and fivefeet in diameter, with a circular hole in the centre through which the horizontalshaft or arm pass es, and forces them round. As the stones vary in their speed on the inner and outer edges, there is a grinding as well as a crushing pro cess. When the machine is at work, a quantity of quicksilver is thrown into the trench, and the quartz with it. A small stream of water runs in, and at one portion of the rim there is a hole for it to run over, which it does, carrying the floating mud with it. As it runs over, it falls into a goat-skin, with quicksilver at the bottom. Out of this goat-skin it falls into a second, with more quicksilver, and so on from one to another, according to the amount of fall When the quicksilver is supposed to be saturated, the mill is stopped, the quicksilver is taken out of all the receptacles, and poured into a linen bag of fine texture, and three or four thicknesses. The quicksiver is squeezed through this bag, and the thickening amalgam is finally rammed down with a sort of rolling pin.
The steepest railroad grade in Europe, is up:
on the Piedmontese Railroad, between Turin and Genoa. It is near the town of Gleni, and the ascent is 185 feet to a mile! Experiments which have been made have shown that two locomotives, drawing a train of six loaded gravcars, weighing altogether 100 tons, ascended the grade at a time when the rails were exceed ingly wet and slippery, at a speed of nineteen miles an hour.

A spiritual Machine.

We learn that Mr. J. T. Pease, of Thomponville, Connecticut, has succeeded in inventg a machine which he denominates the Spirit al Telegraph Dial. This apparatusis contrived with a dial face, on which are marked the leters of the alphabet, the Arabic numerals, the words Yes and No, and some other convenient igns. A moveable hand, or pointer, is fixed in he centre; and when a ghost wants to commuicate with its pupils and friends in the body, Il that is requisite is for it to give a gentle witch to the pointer, and the revelation is ac complished. Mr. Pease states that with a good ipping medium to facilitate the movements of the pointer by agitating the table, letters will be dicated to the dial as fast as an amanuesis can write them down. There is also an arangement y which the dial may be concealed from the ight of the medium, so that he cannot know what it is that is being said by the ghost.Exchange
[Will Mr. P. interrogate his machine respect ing the future of the Ericsson, and send us the result of his observation. If he will foretell the destiny of this ship we are ready to endorse his vention, but until we see some such evidence of its skill we must remain ehary of it.

Preparation of Ferrocyanhydric Acid.
Liebig gives the following simple method of preparing this acid. When a cold saturated solution of ferrocyanate of potash is mixed with its own volume of fuming muriatic acid added in small portions at a time, a snow-white pre cipitate of pure ferrocyanhydric acid is thrown down. These are to be washed with muriatic acid, dried upon a brick, and dissolved in alco ol; from the alcoholic solution the acid may be obtained in beautiful crystals.

Manufacturers and Inventors SCIENTIFIC AMERICAN commenced about.ithe 20th september, each year, and the BEST PAPER for Mechanics and Inventors pub shed in the world.
Each Voiume contains 416 pages of m

500 MECHANICAL ENGRAVINGS

 NEW INVENTIONS Cry The SCIENTIFIC AMERICANis a Whbily Jour ARTS, SCIENCES, AND MECHANICS, aving for its object the advancement of the interests of mechanics, mandracturers and inventors.ach Number is illustrated with from FIVE TO TEN AL ENGRAVINGS of NEW MECHANICAL INVENTIONS, nearly all of te best inventions which are patented at Washington being illustrated in the Scientific American. It also ontains a Wrerly Lisr of american patents:otices of the progress of all MECHANICAL AND SOC NTino mpromens practical directions on th MACHINERY, TOOLS, \&c. \&c.
It isprinted with newtypeon beautiful paper, and be ngad apted tobinding, the subscriber is possessed, at the do of the year. of a Vings.
The
ne ins: ancrican is the Repertory of Patent In. clonedia of the useful and sims alone are worth ten times the subscription o every inventor.

TERMS: TERMS! : TERMS!

Tive coples, for Six Months
Ten Oopies, for Six Months
Ten Oopies, for Twelve Months
Fifteen Oopies for Twelve Months Twenty Oopies for Twelve Months Bouthern and Western Money taben at par for Sub-
scriptions, or Post Offce Stamps taken at their par value Letters should be directed (post-paid) to
, MONN $\& 00$,

