162

star wheel, S , in its proper position. The shut tie box-by this plan of operating it-can be made to revolve entirely, or make a semi or quarter revolution and rotate back again. $\mathbf{T w}$ such shuttle boxes can also be placed on one loom-one on each side.
There is neitherspring, catch nor weight connected with the machinery, or operating the boxes. The links of the pattern chain can be painted and arranged together, just as the colors are wanted in the cloth, and these will be observable by the weaver at all times. Such a loom can be built in a very substantial manner, and from the ease of its motions, it is not liable to be broken in any of its parts. It can also be run at a high speed, because there must be less breakage of. weft than on looms, which shift the boxes with a quick jerking motion.
More information may be obtained by letter (or otherwise) addressed to Mr. Ames, asabove directed. This loom was awarded a silver medal by the Jury at the Crystal Palace.

Polarization of light.-This is one of the most extraordinary properties of light, and in the hands of opticians, it has recently become one of the most useful branches of optics, the phenomenon however, is not generally understood; it does not mean that a ray of light has two poles, like those of a magnet-a polarized ray of light, simply means, a difference of sides. The phenomenon of the polarization of light was discovered by M. Malus, a French officer of engineers in 1809. The double refracting property of Iceland spar, wiish had been so carefulis examined by Huygens, drew also the attention of Newton, who concluded that the ray which suffers the unusual refraction must have its opposite sides affected by some virtue like magnetism, which gives them a tendency like magnetism. Malus in one of his frequent visits to the observatory during his residence in Paris in 1809, was struck with the brilliant reflection of the setting sun from one of the windows of the Luxembourg palace. On looking at the appearance through a prism of rock crystal, which he slowly turned round, hesaw with surprise, that one of the images changed regularly from brightness to obscurity; next morning he repeated his experiment with the same results, and soon found that light reflected at a certain angle from the surface of the glass, acquires the same character as the extraordinary ray in the double refracting prison. This latr was traced through various reflecting surfaces, but the career of Malus was cut short by a lingering disease in 1812 .
That a ray of lightshould (in some cases) possess this property is not perhaps so wonderful or unexpected as that man should have been able to detect a fact so refined and remote from common observation, and even to distinguish different varieties of it, and inveatigate its laws. Indeed, these must be regarded as the very penetralia of physics, the very inmost secrets of nature that man has been enabled to wrest from her. If the mensurable spaces occupied by the waves of light be minute, how far less, in all probability, must be those immeasurable spaces to which its vibrations are confined (which even in sound are mostly inappreciable, though the waves occupy many feet); yet it is to the positions of these inconceivably minute vibrations that the differences of polarization are due.
Differences of intensity depend on their extent; differences of color on their frequency; differences of polarization on their form and direction.
These differences are not sensible to the eye, but are arrived at by inductive reasoning from facts like the following. Let r , fig. 1 , represent a ray of Ig ght, which in its progress meets (ob-
$\left\lvert\, \begin{aligned} & \text { liquely) with the surface } s \text {; a portion of it will } \\ & \text { be transmitted, and the rest reflected in the di- }\end{aligned}\right.$ be transmitted, and the rest reflected in the di-
rections s. a. Now, by making s revolve round an axis coincident with the ray, r.s, we may obviously reflect it in various directions successively, as S B, S C, SD, SE,SF,SG,SH, allmaking equal angles with the original ray r s; and if this be destitute of polarity, there is no reason in these different directions, nor will a direct ray from any luminous source do so. The reflected light will bear the same proportion to the transmitted in each case; so that all the rays $\mathrm{S}, \mathrm{A}, \mathrm{S}$ b, \&c. will be of equal intensity.But if we find that they are unequal, the transmitted ray being brighter, and the reflected one fainter, when the latter is turned in the directions $S_{\text {b }}$ and $S F$ (for instance), than in the directions S D or S H, we have distinct proof that this light has sides, or is polarized.
Or suppose we turn the ray aside by refraction, as by a prism P. By turning this prism round so as to take successively the positions shown in the lower part of the figure, at $\mathbf{P} .1$, 2,3 , we may plainly turn the ray upwards, downwards, or sideways, in any of the directions $p 1, p 2, p 3, p 4, p 5, p 6, p 7, p 8, p 9$, $p 10, p 11, p 12$, (the refraction in each case being equal). Now, if it behave differently in these cases; if, for instance, it be refracted doubly, or split into two rays of equal intensity when turned upwards or downwards, and into two of unequal intensity when turned to the right or left, its polarization is thus manitest. Or again, if the eye receive this ray through a plate of some transparent substance c, and if more light penetrate this plate when it is held upright, as at c, than when held across as at c (though in both cases perpendicular to the ray,) we plainly learn from this not only the polarity of the light, but also that of the substance c, which must evidently possess a grain or polarity of texture, a difference of properties in different directions; and accordingly this action on light is perceived only in crystallized bodies, or those which, from the action of their molecular forces, assume certain definite geometrical forms, and whose polarity is also manifest in many other ways, as by their splitting in certain directions rather than others, their expanding by heat unequally in different directions, \&c. \&c.

General Ecientific Memoranda

Bohemian Crystal Knives.-Among the various novelties prepared for the new year, and in which the shops of Paris abounded were fruit knives of Bohenian crystal; the blade of white crystal, and the handle a happy mixture of white and blue, or white and claret colors.Hitherto silver knives have been thought indespensable for fruit; but this crystal novelty is likely to supersede them; they are not only an ornament for a dinner table, but are more easily kept clean and bright than silver.
Fall of a Suspension Bridge.-The Suspension Bridge, uniting the cities of Covington and Newport, Ky , just erected at a cost of $\$ 80$ 000 , andwhose entire destruction by falling into the river in consequence of the breaking of the keys, had, as is stated by the Cincinnatti "Commercial," just been taken off the hands of the contractors by the towns, and a toll gate established. Its capacity of resistance was never tested before the job, was taken from the contractors, a neglect quite unpardonable.When the bridge fell, a drove of cattle were upon it near the centre, while the driver doubting the security of the bridge, stood at a little distance, on the Newport side, and watching his cattle, saw them take the dizzy plunge, amid crashing timber and iron, into the icy river.
Manere Irrigation in agriculture.-Mr. Mechi, of Tiptreehall farm, Essex, England, has this year read at the Society of Arts his annual statement of experiments on the poor land he has been farming at Tiptree. This land, when he took it, was of the most meagre kind, and nothing like repaid the expense of cultivation. Mr. Mechi has drained it, irrigated it, manured it, employed all the improved machines, erected buildings for the cattle, has been at great expense, and has adopted all the newest improvements, even to the American threshing machine. The result has been that last year
-a bad year for weather-after paying all ex-
penses, he is the gainer of $\$ 3,000$ in hard cash, and his estate is worth ten times what it we when he took it. He enlarged much upon the mmense improvement in grasses obtained by liquid manure, and expressed his wonder that ships should be sent to a distant land, and $\$ 50$ ton paid for guano, when a far better fertili zer was to be had at home. He instanced piece of pasture land, of his own, which eighteen months since was a wretched piece of plastic clay, producing meagre drab colored grasses. It was like bird lime in the winter, and ron in the summer, and really not, and never had been, good for any thing. Irrigation with quid manure has changed all this, and now produces the very finest and most fattening grasses, the importance of which may be understood when Professor Way, in his valuable ana lysis, stated that irrigated grasses contained 25 per cent more meat making matter than those which are not irrigated.
The difference between the present and for mer Balance Sheets, lies in the live stock ac counts. By irrigation he is enabled to double if not triple, his green and root crops, and thus renders them highly profitable instead of being unprofitable. By doubling his stock he doubles the quantity of manure. And by doubling his green and root crop he diminishes their cost by one-half. Irrigation permits each crop to be responsible for its animal charge, thus rendering them all remunerative.
Breech-Loading Cannons. -A final trial of Dr. Church's • breech-loading cannons has been made at Woolwich, England. They were fired fifty times with heavy charges of powder and ball with perfect success. No defect could be pointed out by the best judges. According to this plan, heavy guns can be loaded and fired and brought into position by two men five times in a minute, and field pieces eight time in a minute. The gun heats but very little.
Glass Columns.-The Prussians have put glass to a novel use. A column, consisting entirely of glass, placed on a predestal of Carrara marble, and surmounted by a statue of Peace six feet high, by the celebrated sculptor Rauch, has been erected in the garden of the palace at Potsdam. The shaft is ornamented with api ral lines of blue and white.
Marine Telegraph Cable Across the Hud son.-A new cable of telegraphic wire made by Messrs. Newell \& Co., at Gateshead-upon-Tyne, England, has been laid across the Hudson River from Fort Washington to Fort Lee, by order of Mr. Rogers, Superintendent of House's New York and Washington telegraph line. The ca ble contained a single conductor of No. 16 copper wire, covered with two coats of gutta percha, and wrapped with rope yarn, forming a core, over which are spirally laid eight No. 10 galvanized iron wires, as a metallic covering, to protect the enclosed copper conductor. It weighs 3,525 pounds, is three fourths of an inch thick, and one mile in length. It was unrolled from a capstan on board the steamboat Delaware.
There are about one hundred steamers lying side by side at the Cincinnati levees, some frozen in by the iceand others aground. Cargoes are taken on board, so that the shipper may get a bale of lading and the advances upon it. The cargoes are insured when put on board.Two things endanger these vessels and their freight. Fire breaking out in one would be likely to sweep the whole, and on the breaking up of the ice by high water, they are in danger of being sunk, as numbers were two years ago.
Two mammoth steamers are building in Buffalo, to run in connection with the Michigan Central Railroad route on the opening of navigation. They are estimated to cost $\$ 500,000$ each, and are to be named the "Plymouth" and "Western World."

Vastness of the Universe.

Professor Hitchcock, in one of his popular scientific works has aptly illustrated the vastness of the Universe. Light, although apparently visible instantaneously, really requires an appreciable time to travel. A flash of light ning, occurring on earth would not be visi-
ble on the moon till a second and a quarter af
terwards; on the sun till eight minutes; at the planet Jupiter, when at its greatest distance
from us, till fifty-two minutes; on Uranus till from us, till fifty-two minutes; on Uranus till two hours; on Neptune till four hours and a quarter; on the Star Vega, of the first magnitude, till forty-five years; on a star of the twelfth magnitude till four thousand years.

Extraordinary Invention

Messrs. Editors-While we are every day hearing of new inventions and the progress of reform, I take the liberty to state to the readers of your valuable journal what I have invented and am about to bring before the world at the earliest possible period. For the last four years I have had my mind engaged upon a marine locomotive, and I have succeeded in bringing it to nearly a perfect plan, it is unlike anything now used in navigating the ocean: one of its most important features is 'the remarkable fact that it has no head-water resist-ance-thus the speed can be increased in the same ratio as we increase the number of revolutions. I make these statements candidly, and my object is to open the way to give my invention a public demonstration, and if any one has any invention of the same kind, embracing the ame principle, let him make it known now, and ot wait until the thing is before the public, and then come forward and claim it as his own. If any one has invented a locomotive that will cross the Atlantic in four days without any head-water resistance-let him speak now; if not, let him forever hold his peace, for I have uch an invention, and am ready to prove my tatement to any one who will address me postpaid.
$18,1854$.
[Since the above letter was in type, Mr. Frost harnished us with diagrams of his astonishing invention, from which we shall execute engravings to present to our readers in a few weeks.

To Detect Cotton in Linen.

Elsner has published a critical review of the arious methods proposed to distinguish cotton and flaxen fibres (Berlin. Industrie u. Handesbl. xxiv.), the best of which we extract from is report. Stockhardt observed that a flaxen bre, inflamedin a vertical position, and then extinguished, appeared to be carbonized at that end in a smooth, coherent shape, while cotton, similarly treated, appeared to be spread out like a brush or tuft. Elsuer observes thatit especially occurs when the flame is violently blown out, and that it succeeds with dyed goods, unless dyed by chrome yellow.
The potash test consists in putting the fibre into boiling caustic potassa-lye for a couple of minutes, when the flax turns deep-yellow and the cotton is scarcely changed. The test is not reliable.
One of the best is the microscopic examination, for when flax is magnified 300 times, it appears like long, compact tubes, witha narrow channel in the centre, while cotton appears to be flattened, ribbon-like cylinders, with a wide hannel, and mostly in spiral windings.
The test with oil of vitriol is reliable in an experienced hand, but every trace of weaver's gum must have been previously removed by boiling with water. The fibre are laid on a plate of glass, and oil of vitriol dropped on it.A single lens is sufficient to observe the effect. In a short time the cotton fibre is dissolved, the flax unalterated, or only the finest fibres attacked.
The oil test is also a good one, and convenient in execution. When flaxen fibres are rubbed up with olive-oil, they appear transparent, like oiled papet, while cotton, under similar circumstances, remain white and opake.Dyed goods exhibit the same, if previously bleached by chloride of lime.
Elsner's method consists in putting the fibres for a few minutes into a tincture of various red dyes, of which cochineal and madder give the most striking results. The tincture is made by putting 1 pt . madder, \&c, into 20 pts . common alcohol for 24 hours. In the cochineal tincture, cotton is colored bright-red; flax, violet;-in madder, cotton becomes light-yellow; pure flax yellowish-red.

It is better to employ several of these tests, the microscopic, oil, sulphuric acid, and com-
bustion, rather than to rely upon a single test.

[Reported Officially for the Scientific American.] LIST OF PATENT CLAIMS Ingued from the United States Patent

- por tak week knding janvary $21,1854$. Coprivg Press.-Byicalvin Adams, of Pitssurg, Pa.:
claim the canbination of the lever, bar and upper

 the end of the cam lever in combination with the rest
and other partsof the press for the purpose of raising
the upper pate of the press and ustaining it its
place.while the copying books is inserted or withdrawn phe ace. While
as set forth.

 sure, avoiding the jar of the tmachinery and obviating
the liabilities of the jaeks to hang on the flanges of the
levers, as set forth.

 state, and to rise in and about the same to the flame, as
set torth, I claim the draught tube placed within the
Second,

 under side of the cap within the series of air hoies in
the same for the purpose of preventing gusts of a ar
from producing puft of smoke up the chimney, as set
forth

 bur the gaseous and mereinfammable elementis of the
coat in imouediat contact with its more refractor
portions and thus ensure the complete combustion of
them both.

 communicatemitithene int int
movementian
move pecificad

sino

Norts.-A number of the patents in the above list
were secured through the Scientific American Patent were sect
Agency.

Recent Foreign Inventions.

Manufacturine Paper.-Geo. Stiff, of Lon. don, Eng., patentee. In carrying out his invention, the patentee makes use of straw, or grass, "gunney bagging," and "hemp bagging," preferring however, the employment of straw.When straw, grass, or vegetable fibre of any similar kind is employed, the first process made use of is to cut the straw or fibre into lengths of about half an inch, 一which may be done in a chaff -cutting machine or any similar apparatus heretofore employed for the purpose; after which, the straw or fibre is winnowed, by any suitable contrivance, in order to separate the could not be readily reduced to the consistency of pulp. The straw or fibre, thus treated, or the gunney bagging, or hemp bagging, after having been suitably prepared, is placed in a boiler or vessel, together with a sufficient quantity of clear water to cover the fibre or other material, and boiled for the space of one ed with partition or diaphram, finely perforated, or composed of gauze or similar material, through which the water may be drained off from the fibre or other material, and carried a way through a discharge-pipe, which is brought into connection with the lower surface of the boiler or vessel. After this process, the fibre or other material is to be immersed in lime-wa-
ter, in the proportion of about 1 cwt . of limewater to every cwt. of material, and to remain water to every cwt. of material, and to remain
so immersed for the space of about 24 hours, the mixture being occasionally stirred. After the expiration of this time, the-lime water is to be drained off, and a fresh solution poured on, which is again drained off', as before. When this operation hasbeen continued during about three days, the fibre or other material is to be placed in water, t which alkalihas been added, in the proportion of about 10 lbs . of alkali to every 1 cwt. of water, and boiled for the space
of two or three hours; the alkaline solution is of two or three hours; the alkaline solution is
thendrained off, in the manner before described After the fibre of the material has been thus treated, it is washed and bleached in the same manner as when bleaching rags; that is to say, -by running it into tanks or vessels, with a quantity of chlorine or bleaching powder, sufficient to bleach it to that degree of whiteness which is required for the quality of paper to'be made. After being thus bleached, the straw or other fibre or material, may be washed and beaten, and reduced to pulp or half stuff, in the usual manner; and the pulp or half stuff may be converted into such paper as shall be required by the process heretofore in use.
The patentee claims the substitution of limewater for other alkaline solutions heretofore employed in the maceration of straw, grass, or other vegetable fibre, or gunney bagging, or hemp bagging, used to form the pulp or half stuff, in the manufacture of such descriptions of paper as are produced from the aforesaid ma-terials.-[Newton's London Journal.
Fire-Proof Paper-E. Maniere, of London, patentee. This invention consists in applying asbestos to the manufacture of paper. The as bestos is rendered very fine and pulpy, and mixed along with the pulp of rags.

Tanning Cotton and Linen.

English and French fishermen have been long in the habit of tanning their sails, \&c. in bark liquors, in order to render them more durable. Miliet states that pieces of linen, treated for 72 hours with an oak bark liquor, at tered in a damp cellar for 10 years; while untanned linen in the same place and for the same time had entirely rotted. The one frame, also tanned, was perfectly preserved, and the other, untanned, had rotted. It was further shown
that linen, which had began to moulder, might be preserved from further change by being tanned. It seems to be only necessary that the articles should be kept 2 or 3 days in a warm solution of tannin.
Awnings may be treated in this manner with either oak bark, or sumac,-both will answer. This will afford a useful hint to our sail-cloth manufacturers.

Ocean Steamers.

Within a short time three new steam lines have been formed to connect Liverpool severally with Maine, New Foundland and New Brunswiek, and which will comprise 10 steamships as follows: Liverpool and Portland line 3; Liverpool, Glasgow and Montreal, 5 ; Liverpool and St. Johns, 2. The first mentioned will be semi-monthly. The pioneer of the line, the Sarah Sands, has already made her first trip.The stea mers of the Montreal line will measure 2,000 tons each, and one of them will be ready in June next. The line to St. Johref is projected by the proprietors of the St. Johns and Liverpool line of packet ships, which consists of eight vessels. The steamers now proposed are iron screw steamships, of 1,600 tons, to be bark-rigged, and to cost $\$ 250,000$ each. They will each cross the Atlantic once a month, touching at St. Johns, New Foundland, on every trip.

Cast and Wrought Irnn Rails.
It has been proposed to employ cast instead of wrought' iron rails, on our railroads. The reasons given for the substitution of the former for the latter are, greater power of resisting crushing pressure; and also greater cheapness. The cast iron rail was the first and consequently it is the oldest. If the action of locomotives and trains upon rails 'was merely a crushing pressure, then the cast iron rail would be the best-but the action of a train upon the rails is frequently like that of a number of heavy and rapid blows upon an anvil. As cast-iron is very brittle, and breaks very easily during severe frosts by ablow, it would not be suitable in our climate during the wister season.

Pittsburg Statiotices.

There are in Pittsburg and its viciuity seven teen large rolling mills; twel ve principal or large foundries; twenty glass manufactories; about twenty engine and machine shops; five large cotton factories; four large flouring mills, besides some smaller ones; and it is estimated that there are more than one hundred steam engines in operation in the city and vicinity.

Cold in England.

By the last news from Europe, it appears that England has been visited with the severest cold ever recorded in history, namely, 4° below ero. A number of persons have been frozen to death, as no preparations are over made by the people for such severe weather.

The New Patent Law of England.
By the new pateut law of England, the heirs of a deceased inventor can take out a patènt. This could not be done under the old law, if the inventor died between the periods of filing his application and the enrollment of the patent.

Tracing Paper.

A sheet of fine thin white paper dipped into a thick solution of gum arabic and then pressed between two dry sheets, renders the three transparent when dry; it is very useful for tracing purposes as it can either be written or painted upon.

There are on the earth $1,000,000,000$ inhabitants; of these $33,333,333$ die every year, 91,824 every hour, and sixty every minute, or one every second. These losses are about balanced by an equal number of births.

Elastie Varnish for Leather.
Take two parts by weight of resin, and one of ndia rubber, and heat them in an earthen ware vessel until they are fused together, after which they should be stirred until they are quite cold, a little boiled linseed oil may be added, while the materials are hot.

If ivory becomes brittle by age, it will re cover its original quality by being boiled in
 with the mecha nism described, or its equivalent, which
emables the operator to vary the tengh of the trome
made ty the chisel while it is in operation or suspend made bs the chisel while et it in operation or suspend
ing motion at pleperure without disconn-etcing the driv-
ing applied to operate the machine.

