## A NOVEL MODE OF TELEGRAPHING BY BOLAR

 LIGHT.A simple and we believe a new method of telegraphing by signals, has just been brought to our notice by Messrs. Abner Lane and Sherman Kelsey, of Killingworth, Conn. These gentlemen have recently instituted a series of experiments to ascertain the possibility of communicating intelligibly between remote points. Having become satisfied of the practicabilits of their scheme, they have filed a caveat in the United States Patent Office, and secured this discovery to themselves. The principle of this telegraph is that of reflected light. A common lookingglass of any suitable size (the power of course varying with the dimensions) is so held in the sunlight as to project a pencil of rays in the direction of the person to be communicated with. When the beam of light passes the eyes of the second party, it is readily distinguished, and the message is sent by intermitting the time between the flashes. Thus, if one movement of the mirror is made, that will denote $A$; two movements, $B$; and so on through the al phabet. In transmitting sentences or lengthened conversations, it is necessary, of course, to begin indiscriminately in the alphabet, commencing to spell a word. Thus, if the word Light is to be sent, the glass is moved for abcdefghijk $l$. Then a longer interval ; then moved for abcdefghis when another interval occurs, and the glass is again moved for abcdef $g$-interval-then for abcdef $\mathrm{g} h$-interval-then forabcdefghijklmnop qrat-then cease. Operator No. 2 repeats as he segs the flashes, abcdefghijkl. He knows $l$ is the first letter; then repeats a b cde f $\mathrm{g} . \mathrm{h} i-i$, then, is the next letter. Then abcdef $g$-then $g$ is the next. Then a b c def $\mathrm{g} h-h$ the next. Then abc
 has the word Elight.
From the above it can be seen how any message can be sent, or how any conversation can be carried on. For operator No. 2 can have a mirror and send back messages or answers in the same way. An experimental trial of this system of telegraphy was made by the parties interested a short time ago. The scene of the experiment was between Falkland Island and the mainland, (Connecticut) a distance of 15 .miles intervening between the operators. It was satisfac torily ascertained that simple sentences could be transmitted with the greatest ease, and the inventors conversed for an hour and a-half on topics concerning family matters. The principle can be applied in many ways. The flashes can be repeated an unequal number of times, and at different intervals, to represent certain letters and sounds. Also two or more flashes may be repeated, in quick succession with a single flash, at different intervals and in different orders, to represent letters or sounds. Instead of moving the mirror, it may be stationary, except to move as the sun moves, so as to throw light in the right direction. The rays may be also intercepted periodically by a screen or other device. The light may be continued for any length of time, either in a single flash or as long as desired.
An alphabet of the character of the " Morse alphabet" may also be used. Mr. Lane states that he has devised an alphabet by which messages can be conveyed, with the same facility and dispatch as by the electro-magnetic telegraph with the "Morse" alphabet. So also colored light may be used in connection with this system of telegraphy.
The means by which the ends are attained are simple, and require no apparatus beyond an ordinary mirror. For army and navy purposes we should think this mode of telegraphing is peculiarly adapted.

## THE AMERICAN WATCH A8 A TIME-REEPER.

Some time during the early part of this year we visited Waltham, Mass.; in a subsequent number of the Scientipic American we gave an account of the American Watch Factory at that place, and the operations therein carried on. We also expressed the opinion that for beauty of workmanship, exactness as time-keepers, and geueral reliabllity, the watches there made were not surpassed, or even equalled, by any imported. Wholly from a desire to see the American watch in the pockets of the American people, and Yankee time recorded by the product of Yankee skill, we reassert the opinions then ex-
prosed : they are fully sustained by our experience, apd we are satisfied that no one need desire a more accurate or beautiful watch than those made at Waltham ; all the encomiums we pronounced on the occasion referred to are fully warranted. There is an American watch in this office, of the very finest quality, which has not lost 90 seconds in 8 months; there may be some even better records than this; but although we pride ourselves on our punctuality, it is near enough for our purposes, and if we lose no more than one minute and a-half from our engagements in half a year, we are well content to set it down as profit and loss. These remarks are unsolicited from any source, but are only an act of simple justice to the American Watch Company.
HORACE H. DAY'S INDIA-RUBBER BREECH-PIECE. Report made to Bureau of Obdnance (Navy Department) on September 23, 1863, by Lieutenant-Commander W. W. Queen, on Gun-practice with Day's India-Rubber Breech-Piece.


Had to draw the 8th charge and put in a now match, the shot having laid on the lst match, putting it out. A primer was used previous to withdrawing the charge, which had no effect except to make a hole in the rubber.
Several times the rubber breech-piece was forced out of the chamber by the concussion.
The record shows that not much accuracy was obtained, although the gun was well sighted.
No tackles or breechings used.
With India-Rubber Breech-|Fired for comparison with In-
Piece, December 20th, dia-Rubber Breech-Piece, $1862 . \quad$ Dec. $20 \mathrm{th}, 1862$.
32-pdr., No. 354, (W. 32-pdr., No. 354, (W. P. F.) Shot, 32.50 lbs. P. F.) Shot 32.50 lbs. 9 lbs. cannon powder, 9 lbs. cannon powder 1862. 1862.


Correct copy.
W. Mitchele,

Lieut. Comdr. and Executive Officer. September 23, 1863.


The rubber breech-piece was 8 inches in length and .2 of an inch smaller in diameter than the bore of the gun, with its rear shaped to fit the bottom of the bore.
The rear of the breech-piece was hollowed out, as per sketch.


The rubber was vulcanized to $280^{\circ}$ Fah.
Weight of breech-piece, 22 lbs.
Respectfully submitted,
(Signed) John J. Mitchell, Lieut.Comdr. U. S. N.
Correct copy.
W. Mitchell,

Lieut.-Comdr. and Executive Officer.
Suptember 23, 1863.
Practice at Iron-Plated Target, No. 35, Experimental Battery, March 2, 1863.

Gun, 130 pdr., No. 2. On pivot carriage at east end of battery. Charges, cannon powder. Projectiles, solid shot, Cloverdale cast-iron. Primers, quick match from muzzle. Offcer in charge, Leut.Comdr. Wm. Mitchell. Record by Moore.


Mr. Day's India-Rubber Breech-piece was used. The following are the measurements and weight : Length, 10 inches; diameter, 9.95 inches; weight, 34 lbs. 25.

The Rubber Breech-piece was thrown forward from its seat $2 \frac{1}{2}$ inches, and the action of the gas escaping through the vent drew the surface of the rear of breech piece toward the vent, making a ragged mass of rubber at that point, and stopping up the vent.

## Respectfully submitted,

(Signed)
Wm. Mitchelt,
Lieut.Comdr. U. S. N.
Correct.
W. Mironbit,

Lieut.-Comdr. and Executive Olficer.
September 23, 1863.

