114

Imponderable Agents...-No. 2. [Second Series.
Light - In our last number the theories of Descartes and Newton were presented, and their identity in relation to an undulatory action pointed out. The arguments we have adduced to prove that identity may be new, but not the conclusion. We have still something to add to them.
If light were composed of luminous particles projected through vacuo from the sun, then those particles, if possessing inertia-according to the corpuscular theory-must be defiected from opaque bodies, such as from the moon to the earth, and vice versa, and at last be deposited on all the planets and their satellites reciprocally. As these particles of light cannot be annihilated, it must follow that an accumulation of them should make our earth a luminous body. As there is no prospect of this taking place at present; and as the sun fulfills the same Divine office now as at the Creation"giving light to the earth," we must conclude
that the theory of a subtle ether pervading space, the vibrations of which produce the phenomena of light, appears to be the most rational. But we have stated that the luminous particles of Newton must, in the aggregate, - form an elastic subtle fluid, and thus the theories of Newton and Descartes dovetail into one another. If those luminous particles do not form an elastic fluid in the aggregate, they must form "light-dust,"-an atmosphere of iigid par-ticles-and if so, they can easily be weighed, but still this will not exclude them from the undulatory theory, for a motion impressed upon such particles must be undulatory. The readiness by which so many facts in relation to light can be explained by both Newton's and Descartes, theories, thus finds a solution; both are true-identical.

Light and Sown-Euler has, in a most beautiful manner, compared the action of produciug light by the vibrations of his subtle ether, to the production of sound, by the vibrations of our atmosphere. In explaining his theory, he employs a bell as an instrument of elucidation. In condemning Euler's explanation, it was said, "unfortunately for this hypo thesis, it has been found that the conducting power of the air increases with its density, while wood and the metals are better conduct ors of sound than any other matter." Thi does not affect Euler's explanation, for density in bodies, independent of elasticity has nothing to do with propagating sound, and it was the great elasticity of his ether which Euler considered, gave it the power of producing undula. tions with such extraordinary rapidity. The above quotation conveys the idea that sound is conducted like water running through a pipe, not produced by vibrations, and is therefore not a proper explanation of the phenomenon. The power of any body to propagate sound, depends entirely on its elasticity-not its density. Taking air as unity, in producing sound, iron is equal to 17 , while glass is also 17 , and yet the specific gravity of the latter is to the former as 1520 is to 7786 . Sound can scarcely be propagated by lead at all, and yet its gravity to iron is as 11,352 to 7,786 . The velocity of sound through silver is 9 , through copper 12, and yei the specific gravity of the latter is to the former as 8,788 to 10,474 . Sound is propagated through the air with a velocity in proportion to its elasticity. An increase of temperature in the air of a close apartment augments the velocity of sound. A perfectly inelastic body, however dense, cannot propagate sound. This is well known to all those who are acquainted with the science of music, and with musical instruments. The elastic quality in bodies for producing and propagating sound, has no reference to their ductility, that drawing-out quality peculiar to some elastic substances-but the rapidity and power by which bodies, when pressed or impinged upon, return to their original state.

As we intend to present useful and interesting information on all subjects which have a bearing on these questions, the laws and phenomena of "Sound," may be profitably discussed. The aerial currents and fierce winds do not pro duce sound, and yet sound, loud and intense is produced without any current being felt in the
air, by simple pulsations. How trite, then, is \mid in fact. If we take a common gas white flame : in the course of construction, by the Cunard the comparison of Euler, namely, that Light, and reduce it to a blue flame, it will give out Company, which isto be of 3,532 tons burden. like Sound, is produced by the vibrations of a subtle elastic aeriform fluid.
It has been said of this theory that "a luminary emitting white light must, at the same instant, be vibrating at the different rates which produce all the colors in the spectrum."
This is not so ; for these vibrations are modi fied in length and velacity by different media. If the objection were good, it would be is a curi against any theory yet proposed. It fected in the same manner. The pitch of a musical sound is determined by the number of vibrations which reach the ear in a second of time. The sound of the steam whistle of a stationary engine is heard in a different key by a person traveling Lin a train in rapid motion, from that in which it is heard by a person standing beside it.
The same is true of all sounds. If an observer in a railway train be moving at the rate of 56 miles per hour towards a sounding body, he will meet a greater number of vibrations in a second of time, than if he were at rest, it the proportion to which the velocity of the traiu bears to the velocity of sound, and he will hearit a semi-tonehigher than a person moving from the same sounding body at the same velocity. In the case of two railway trains running towards one another at this velocity, the one contaiuing the sounding body, and the other the observer, the efiect is doubled in amount. Before the trains come together, the sound is heard two semi-tones too high, after they pase wo semi-tones too low-equal to a major third.

(To be Continued.)

Carburetted Hydrogen.

Messes. Editors-I beg to offer a few remarks in ${ }^{-}$reßly to J. F. Mascher's article, on page 90 of the "Scientific American," on the subject of Gas Burning. Combustion can ouly take place at the point where the substances which enter into combustion are immediately in contact-this is distinctly seen in the flame of a common gas burner. The true combustion is confined to a thin exterior sheet of the dame, and all within this is dark, affording no ight whatever, because it is occupied by the combustible material or gas escaping from the source of its supply. The interior part of a gas dame varies in darkness according to the pres sure of it in the pipe, and is incapable of entering into combustion and giving light from want of proper access to the oxygen of the atmosphere, which is indispensably necessary to the developement of combustion. There is also seen in gas flames a thin blue line around the exterior, which is caused by the low temperasure of the gas, and affords little or any light; so that quite one-third of the gas flame is destitute of light. Now, the dark portion of the miterior of a gas flame is simply the result of he gas escaping faster than the process of combustion can consume it. Mr. Mascher says, after charging the bladder with gas, "putting it under my arm the results were these; with moderate pressure of the arm, I obtained the usual light, but on increasing the pressure to a certain extent, I was surprised to find that, instead of obtaining more light, the gas burned with a perfectly blue flame, and the room which was in the first place illuminated, suddenly became quite dark, although it is evident that with the increase of pressure there was an in creased consumption of gas." Now my explanation is proved by the first part of Mr. Mascher's remarks, to be correct, that the dark porion of the flame, is caused by the gas escaping too rapidly for the process of combustion, which is unable to take it up so fast. But with increased pressure I don't think there is an in creased consumption of gas by combustion; it is wasted because it is carried beyond the point where combustion is actually taking place by its own elastic force, when a considerable body of it is confined, thereby creating great pressure.
Philadelphia. Pa
[Our correspondent fails to explain the phes oomena described in Mr. Mascher's letter. By , theory above set forth, a white flameshould
more heat in the latter case, but less light. The
white flame of gas light does not depend upon white flame of gas light does not depend upon the intensity of the heat, but the time and space, to allow the solid particles of carbon in the gas to be become incandescent. That the carbon can be consumed (converted by oxygen into C. $0 .{ }^{2}$) during combus tion without producing white light, is something which Mr. Mascher's experiment went to prove, and this contrary to the views generally entertained respecting gas illumination in one case, and respiration is a conclusive proof of the same fact in another case. As the white light was depreciated in intensity, by those experiments, the heat was increased. By the un dulating theory of light, the blue waves are shorter and more rapid than the red and the gellow, and this has its parallel in the gas flame when the pressure is increased. The way to prove this is to take the socket of a common gas burner, and cover it with a disc of fine wire gauze. The gas will burn above the wire gauze with a yellow flame,' which gives more
light than a blue flame; by converting this yellow into a blue flame, the heat will increase but the light will decrease. Now, whether is the greatest amount of heat produced by the most perfect combuztion, or the greatest amount of light? Some may say, "the most perfect combustion produces both the greates amount of heat and light," and yet here is an experiment which proves that the heat is increased in a gas flame at the expense of the light. The yellow flame above the wire gauze is converted iuto the blue flame by blowing into it with a blow-pipe. This device is wel known to all jewellers, and has long been employed by them for soldering. A heat can thus be produced so intense as to melt gold rapidly. The fact is, however, that light can be produced independent of what is understood as combustion, that is, the chemical union of oxygen with carbon to produce carbonic acid gas by a flame. Ho carbonic acid gas is formed ty the electric light, which is the most brilliant of all, hence from this we may infer that those sages of the British Association who have forebodings of the sun's light decreasing, may rest contented, ior in Nature, provision is made for the production of light ad infinitum.

Large ships - Ancient and Modern.

As the question of large ships appears to en gage no small amount of public attention a present, by the construction of the "Great Republic," and the proposed mammoth steamer ol the "Eastern Steam Navigation Company" in England, it may not be uninteresting to devote some space to more than a mere passing notice of the subject.
Some ships were built by the ancients, which or mass far surpassed any now afloat. One was constructed for Ptolemy Philopater, which was 420 feet long, 56 feet broad, and 72 feet deep, and of 6,445 tons burden. The "Great Republic" is 325 feet in length, 58 feet in width, and 39 feet in depth, with a registered burden of 4,500 tons but it is capable of carrying more than 6,000 tons of cargo. It is recorded that Archimedes-who was perhaps the greatest mechanical genius that ever lived-constructed a ship for Hiero, King of Syracuse, of such large dimensions that none of the harbors in Sicily, or Greece could receive it. Noah's ark, by those who are curious in such things, has been calculated to have contained $1,500,000$ cubic feet, and was of 11,905 tons burden. As this vessel was of antedeluvian origin, it may be al lowed to stand out as a giant representative of nautical architecture, belonging to the age of giant men, but archite ts are now determined to surpass even the great father of their calling, by constructing a steamship of 22,942 tons bur-
den, and of an external bulk of $2,973,593$ cubic den, and of an external bulk of $2,973,593$ cubic eet. This is the vessel to which we have allud; it is to be built of iron, a substance which would have been deemed by the ancients better adapted for sinking than swimming. The largest mercantile steamships afloat at present, are those of the Collins Line; the "Arctic" being 3,000 tons burden-the only exception to these is the Great Britain, which is 3,445 tons

A remarkable difference between modern and ancient times, in state and condition, is e^{x} emplified in the "Great Republic." It is the property of a private American citizen; the Trealtil and resources of all Sicily was called in to requisition to construct Hiero's leviathian.
Two hundred years ago the largest vessels were about 80 tons burden, and with a vessel of 60 tons Columbus crossed the Atlantic and discovered our continent. Ten years ago the largest merchant ships afioat were of no greater tonnage than from ten to twelve hundred tons burden, while at the present moment the general tonnage of new built ships range about double that amount. It would therefore see n a_{3} if the bent of th: nautical mind was in favor of "large ships." There is a line of demarcacation, however, in magnitude, beyond which ships canrot be constructed either with safety or proit. The latter eonsideration entirely depends on the length of voyage, the former on the strength and combination of materials employed in the construction; and the manageableness of the ships at sea. For long voyages, arge ships are the most economical, for short ropages s all ones. The other consideration, s $n f_{e} t y$, Grifnith, on page 114 of his "Ship Builders Manual," says, "sthipbuilders are mistaken when they assume a large ship to be equally strong with a small one, and as vessels are increased in size, the Jeverage of the spars tell with more effect. As a consequence, the liability to the damage of cargoes in large vessels sgeater than emaller o es, more particularly clipper . hips, because of their increased lengti..' Here is a statement which afford s. me solution to the complaints from San Francisco, of the great damage sustained by cargoes in recently constructed large clipper ships which have made voyages to that place. "Some other measures,' says the same work, " must be adopted for strengthening such vessels." New improvements, therefore, are demanded in the combin tion of materials in the construction of large ships. -The "Great Republic" is stated to be not only the largest but the stronges built ship i:s the world, an d no doubt the boundary line of safety for large ships is far from being reached yet, but where that line is, we cannot tell, nor do we find any eatisfactory. information on the subject in any of the works we have consulted. Large vessels cannot be managed in a rough sea so well as small ones; they are not so obedient to the helm. As Napoleon said in respect to Generals, "there was only one in Europe beside himself who could manœuvre 100,000 men," so it may be said of sea captains; it certainly requires greater mental capacity to command a large than a small ship Revolving the subject of large ships over and over, and taking into consideration the great advances which have been made in the size of sbips since the Galleon of Columbus touched the Columbian shore, it is our opinion that we shall yet see much laryer ships in our hasbor than any which now float there; the "Great Republic" is a shadow of "coming events."

"Patent"

On the 9th inst., as we learn by our Boston cotemporaries, a very important patent case was tried before Judge Sprague, in the U. S. Circuit Court in that city. The complainant was J. R. Nichols, the defendant J. Newell and others. The suit was brought against defendants for putting the word patent on certain articles which were not not patented, in violation of the patent law, which make a fineable offence of $\$ 100$ for every case-one half of the fine goes to the informer. The defendant was fined $\$ 400$. The articles against which complaint was made, were camphene lamps and cans. Both parties are well known to our ders.
Dr. Bridgeman says that the last census of China which he saw in print was for the year 1813, which made the population of the Empire more than $361,000,000$. He is confident that the present population cannot be less than 400 , 000,000 .
Henry Ramsey, C. E., of Schenectady, N. Y., Henry Ramsey, C. E., of Schenec

[Beportod Officially for the Scientifc American.]
list of patent claimg Iosued from the United states Patent O

Cas Whemis-By Carmi Hart, of Bridgedort, Conn:

 rond turned huse made or
produee tue initurued elicct.

 Winited mot on.
[Ia Tol. 7. pas
[ID Yo. 7 , pase 35 , may be found a description of thi
invention]

 288, vol. $8 \mathrm{Sci} \mathrm{Amm]}$.

 Thins invention possesseses noveity and utility. The
Foreisn as well as American patents were solicited Foreign as well as
turough this ofice.

A Lead Wire the thirteenth of an inch, sus tains but twenty-eight pounds. A Tin Wire, the thirteenth of an inch, sustains but thirty-four

Now Iudia Rubber Case.

We here present the decision of Judge Duer of the Superior Court, in this city, on the above case which was finished on the 9th inst. It had been on trial several days, and eminent counsel wer employed on both sides. The question wa between Horace H. Day and William Judson. All those interested in patents should give this case particular attention. Wm. Judso fled his bill to obtain an injunction against Day from prosecuting certain suits in the Cir cuit Court of the Uuited States, (in which Day is seeking to recover damages for infringemen of a patent granted to Edwin Chaffee, and by him conveyed to Day, on the ground that Judson owned the patent, by assignment, and the conveyance to Day was invalid.
Judge Duer's Decision.-I shall not trouble the counsel of the respondent to reply. I have reflected on this case from the opening of the argument, and am now prepared to stat he conclusion to which I have arrived.
I think it quite unnecessary to inquire wheth er this Court can rightfully stay proceedings in the Court of a sister State by an injunction, but with regard to suits pending in the United states Courts the case is different. Wiih re spect to them the general rule is understood to be, that neither will the Courts of the United tates atiemat by injunction to restrain a pary from proceeding in a suit in the State Court nor, on the other hand, will the State Court at tempt to restrain by an injunction, proceedings in a Court of the United States. Whether that ule is absolute and universal-whether there are or are not any exceptions to it, it is not ecessar'y to decide in this state of the case.That will be a question which, if your suit is continued to be prosecuted, will arise when tinal decree shall be asked for. Admitting however, that there may be exceptions to the rule, as it respects a court of the United States, hold, that in order to justify a Court in treating any case that is brought before them as an exception to that rule, the following facts must ppear:-First, that the complaints must be ounded upon the equity that the Court of the United States, in which the suits are sought to e enjoined are pending, is not competent to dminister the cause-in other words, that the equity which is sought is one which can only be had in the new suit which is instituted ${ }_{\dot{p}}$ and second, that the whole controversy between the parties may be determined in the new suit which is instituted-or in other words, that the arties who are sought to be restrained from the prosecution of their suits in another Court, may ave exactly the same relief if the controvers determined in their favor in the new suit which is instituted, as if they never entertained ny of the suits which have been commenced Now applying these rules to the present case he first condition seems to be fullilled. Th object of this suit is to obtain a final determina
ion of the question whether the prior gran made to Mr . Judson, the plaintiff, on this gran under which Mr. Day, the defendant, claims is valid. That question could not be finally de ermined in any suits that are brought by Mr Day against the licensees of the present plain-
iff. It is true that each of these licensees may set up as a defence the prior grant made to the present plaintiff, and the question as to its validity might arise in this suit; but the determj nation made between them would not conclude any other licensee, and therefore surely would not conclude Mr. Judson. I therefore thiuk that the main question depending between the parties-namely, which of them has a preferable title as assignee of the original patentis one which will probably be determined in a suit between Judson and the present defendant. Therefore I would not scruple, perhaps, even to issue an injunction, provided the other conditions were fulfilled-namely, that this whole controversey should be finally determin ed. I am now considering the case as if the application was made tome upon the complaint isself, without any evidence on the other part I have no right to suppose upon the complaint itself that the plaintiff considers it as a fact conceded that these complainants are absolute wners as assignees of this grant; because, if , the defendant would or could not be entitled to
damages in the suits which he has instituted. I am bound to suppose in determining the question whether the Oourt will exercise its discretion in issuing an injunction, that the allegations in the complaint may perhaps be refuted, and that in the conclusion of the controversey, the defendant may prevail. Then I hold it to be a necessary condition in all cases where an inunction is to be issued, where a bill of peace is filed, whether in a Scate Court, or in a Court of the United States, that the party who is thus enjoined shall have, in the new suit thus instituted, the same relief which, if he prevails, he would be entitled in the suits which he himself has brought. Now, if the other parties against whom these suits are instituted, were all of them parties to the present proceeding, and bs a tinal decree of this Court, this defendant could obtain against them here, precisely the same elief which is sought in the suits that have been instituted, that objection would be removed. But they are not parties to this suit, and all that can be determined in this suit, even if it should be decided in favor of the defendnt, is that his granit is preferable, and that the prior assignment made to Mr. Judson, the plaindiff, is void. His right to recover damages will emain still undecided, and he will be compel ed to prosecute his suit against the defendants, who, in the meantime, may have become irre sponsible. Upon the ground, therefore, that his controversy cannot be determined finall in this suit, and that the defendant cannot obain the relief here which he is seeking to ob tain in the suits which he has instituted, I fee myself bound to deny the motion for an injunc tion.
In answer to an inquiry of Mr. Stoughton udge D. remarked that he never knew of case where $2 n$ injunction had issued on the ap plication of a party who was not a party to the suits to be enjoined.
An appeal was taken to the General Term. For Judson, Charles 0 © Conner and James T. Brady; for Day, N. Richardson, of Boston, and E. W. Stoughton, of New York.
[Our readers will percieve the importance of this case, by the eminent counsel employed. The patent in dispute is that of E . Chaffee an extension of which was granted by Ex-Com issioner Ewbank.
The assignees of the first term of this pa ent were Goodyear, Judson, and others, (we do not know all their names) but the extended term of a patent does not become the properts of the first assignees; it is wholly the inventor's property ; former assignees have no legal right on extended term. H. H. Day, it seems, has become the assignee of the extended term, but here is a dispute about the legality of his bargain. II. H. Day having become the new as ignee of the extended term of Chaff ee's patent as entered his suits against a number of old as ignees, who have been carrying on the manuacture of prepared india rubber goods as formerly. His (Day's) suits are for the infringenent of the patent. The above decision reates to a mercantile transaction; but connected with patents, it embraces new points of legal dispute of no minor importance.

Trial About Selling a Patent.
In this city on Friday the 16th a suit was brought before Judge Ingraham by Samuel G Walker against Abraham Cox to recover dama es (amount laid at $\$ 1,000$) for alleged deceit nd false representations-plaintiff having been induced, it is said, by defendant to purchase and pay $\$ 625$ for a fortieth part of "Mallec's Improved Bell Telegraph,". defendant knowing hat the right to said invention was claimed a he time by Timothy D. Jackson and A. Judson, and that a suit brought by them was pendg in the United States Court at the time to est the said patent ; that plaintiff tendered back he share in said patent and asked for a return of his money, which was not made and action is brought.
In defence, it is denied that Mr. C. knew that here was any doubt in regard to the patent, or that there was any suit pending, or that he made any false representations. He says that he was employed to sell a part of Mr. Howland's inferest and referred plaintiff to Mr. H., and that plaintiff, after examination, purchased.

Measuring the Area of a Cirle.
Permit me, through the columns of the "Scientific American," either to correct an error or to be myself corrccted. In No. 12, of the pre sent volume, were given some good practical rules for finding the area of a circle, illustrated by two examples. If I mistake not, however there was an arithmetical error in the latter proposition, which stands thus: $-4 \times 22=88+$ $7=126.7$; instead of twelve and four sevenths which latter number would quadrate exactly Spring in the former proportion. H. F.

Spring House, Montgomet y Co., P
[You are perfectly right sir, and we thank ou for calling our attention to the snbject.We saw the error also, but too late for cor rection in that number; we intended to make hè correction in our next, but forgot to do so. We make no excuse, for the error should not have been made; it teaches us to be 'more watchful of our language.
A more minute rule than the one given above to find the circumference of a ciscle when the diameter is given, and thus find out its area, is the following :-" The circumference of a circle is to the diameter, as $8 \cdot 14159$ is to 1 . This rule we have always used ourselves, it equires more figures than the other, and this was the reason we did not present it, as the other is sufficient for all practical puropses. What is the circumference of a cylinder, 6 fee in diameter; $6 \times 3.14159=18.84954$. Old Rule. $7 \div 22 \times 6=186.7$.
The Illustrated Weehly Hecord or the New York Exhibition of the Industry of all Nations. Edited by B. Silliman, Jr., and C. R. Goodrich. G. P. Putnam \& Co., of this cily, having been selected as printers and publishers extraordinary to the the Crystal Palace Association, undertook the publicaition of the above work, which we have briefly noticed during its pra gress. We are inclined to think that the "Illusrated Record" has not received from the publie that degree of appreciation it so justly deserves this has undoubtedly compelled the puplioher to restrict the quantity of matter originally in teuded for it. The number before us embraces $15,16,17$, and 18 , although no larger than wo single numbers ought under different circumstances to have been. The necessity which exists for its abridgement is to be regreted for in a strictly artistic sense is the most meritorious work ever undertaken here.
There is, we think, one good reason only for its apparent failure, viz., the dull and heavy character of the articles. Classicality, want of condensing power, absence of the right sort of stamina which makes up the Peoples' Instrucor, too much learning in abstractionisma are incapable of satisfying the universal thirst which now prevails for the arts and sciences. The sheres, were articular species of intellectual labor. Not withstanding this defect the work deserves support. The engravings which have graced its columns are generally of the first order in point of mechanical execution, reminding us of the designs illustrated in the celebrated "London Art Journal," and the public are indebted to Messrs. Putuam \& Co., for the stimulus which they have given to the wood engraving art, an art which is rapidly supplanting all other proesses for beauty, rapidity, and excellence.The "Illustrated Record" will make a very handsome volume, and we hope the public will eel interested in its circulation. The numbers bound will make a beautiful volume of the useful and orna
center table.

Treatment or Trees in Cold W'ealher.
We occasionally hear of people being quite at a loss to know what to do with trees received a cold time, or when the ground is frozen. The way is, either deposit the packages in a ellar as they are received, or open them and et the roots in earth until the weather changes or a trench may be made in the open ground, ven of the surface must be broken with a pickdhe trees laid in until they can be plant They may remain in this state quite safe all winter. Every season, we receive packages frees from Europe in mid-winter, and we find no [Horticulturist.

