Sicentific ${ }^{\text {anthusenm. }}$

Tor the Soientinc American.

On the Trappean Rocks of Nova Scotia.
Having recently returned from a survey of this favored land of minerals, I purpose to lay before your readers some observations which mav be of service to future explorers.
Trap (Swedish trappa, a "stair") derives its name from its terraced sides, and includes basalt, greenstone, trachyte, clinkstone, claystone, porphyry, and amygdaloid. It is an igneous unstratified rock, occurring along with the secondary and tertiary strata, and participating somewhat in the nature of the primary, but formed in all ages and under the cooling influence and pressure of the primitive ocean. influence and pressure of the primitive ocean.
It is very tough, is of a dark green or brown color, has a sp. gr. of $2 \cdot 8-9 \cdot 2$, and is a mixture of feldspar and hornblende or augite. Perhaps in no region of the continent is this anomalous rock represented on so grand a scale as along the northern shore of Nova Scotia. There the formation extends over 150 miles in length; replete with objects of geological and mineralogical interest. For centuries this mural precipice has stood an insurmountable barrier to the mad waves ef the Bay of Fundy, which are continually dashing against it, driven on by tides and tornadoes, of which few have any adequate conception. The variety of trap most prevalent is columnar greenstone, resting on amygdaloid and red sandstone, andis sometimes found of cotemporaneous origin with the lower carboniferous strata.
After these general remarks I particularize. Brier. Island, the western extremity of the range, is the sole property of Pluto. Crossing Grand Passage, we reach Long Island, where the trap is of a darker color than elsowhere, more irregular in form, and interspersed with veins of jaspar and chalcedony, and nodules of chlorite. Separated from this by Petit Passage is Digby Neck; here the trap occurs in regular prismatic columns of three, five, and nine sides. At Sandy Cove the mineralogist will find geodes of chalcedony lined with stilbite and mesotype, specular iron ore, laumonite, and rich agatesfortification, moss, and brecciated. Bowlders of jasper lie scattered along the shore. At Trout Cove, where the basaltic pillars are tumbled about in "confounded confusion," the geologist will find as much to interest him, as the antiquarian amid the fallen temples of Greece. , Gulliver's Hole is another locality of fine agates, as also of stilbite and magnetic iron ore. At Nichol's Mount, the last occurs in hexahedral crystals, and yields about 80 per cent. of cast-iron. At the entrance of Digby Gut stands the Lighthouse on compact trap strengthened by jasper and chalcedonic veins. Snow's Head, on the opposite side, continues the columnar variety incumbent on amygdaloid. Here the traveler will find a harvest of thomsonite, and mammoth indentations and enormous fissures, which will fill him with wonder and bring to mind the days of Titanic power. Twenty miles easterly will bring him to Chute's Cove, presenting upright columns of greenstone ; and the lofty precipices of St. Croix Cove-six miles further-will yield him beautiful heulandite and mesotype. Gathering the rich treasures of thomsonite, analcium, heulandite, and mesotype from the amygdaloidal rocks of Martial's Core, and the Two Mountains, he must pause at Peter's Point, where, beneath its arches and overhanging precipices, he will meet with splendid apophyllite, mesotype, heulandite, laumonite, and thomsonite. At French Cross Cove the trap rises in tables and columns to the hight of $\$ 00$ feet above the Bay. The lowest bed of amygdaloid abounds in zeolites. The next place interesting to the man of science is the dangerous but bold promontory of Cape split-the turning point of that mighty tide of waters which rises to the hight of 70 feet-the highest in theworld. Thence southward for a dosen miles, this wall of adamant gradually ascends till finally it culminates in the majestic Blomidon- 500 feet above the level of the sea. Here the amateur will laugh to scorn his previous collections; amethystine geodes
granular selenite, agates, and agatized hornstone, heliotrope, heulandite, jasper, analcime, atilbite, apophyllite, and noedlestone, from the the talus at the base of this immense basaltic cliff.
Crossing the sheet of water before him at flood tide, let the traveler drop anchor at the Five Islands. Three are trappean; and two of
sandstone and shale. The Leaning Tower is sandstone and shale. The Leaning Tower is posite of research; and on the main land op antique occur. A company has recently been formed in London for the exportation of the formed in London for the exportation of the
latter. On this side the shore, for a long distance, is fronted by a lofty bank of red sandstone capped with greenstone. The vesicular amygdaloid presents the usual zeolites, as also a peculiar mineral called silicious sinter-a light grayish white, cellular quartz. The Two Islands yield fine chabazite, analcime, and mossagate. The next place worthy of notice is Patridge Island-a stupendous mass of trap several hundred feet high, surrounded by wild and picturesque scenery, and decked with those rich gems of nature which make up the summum bonum of the naturalist. He canno leave without a cabinet. Next in order is Cape Sharp, a bluff of amorphous trap resting on sandstone and shale; but it is of no mineralogi cal interest. Fifteen miles to the west stands Cape D'Or. Here, too, the breccia, from the lashing of the angry billows, has given way to wide fissures and deep caverns, over which hang massive volcanic rocks spangled with native copper and brilliant representatives of the zeolite family. This is the last point in the trap formation, of interest to and here we leave him. \qquad J. 0.

The engraving herewith presented is a vertical section of James A Cutting's improved Spark Arrester for Locomotives, patented May 6, 1851.
At the top of the chimney, A, is placed an air-chamber, B, over which a small deflecting cone, C , is inverted. The smoke, as it passes out of this chamber by the openings seen, assumes a rotary motion, by which the sparks and cinders are thrown through the flues, \mathbf{G} G, in the diaphragm, and fall down into the outer chamber, J. The current of steam and smoke passing upward tends to exhaust the chamber, J , of its air, by drawing it through the air lues, E E, and thus there is a tendency to draw the smoke and sparks through the flues, G G. It is evident that at each pulsation of the exhaust steam there will be a draught of air from the spark chamber, J, and this will cause a contrary current during the intervals, which will will have a tendency to increase the draught of he fires.
This Spark Arrester has been assigned by the inventor to Cutting \& Rehr, who manufacture them at 124 Arch street, Philadelphia, and to whom all orders should be addressed, or inquiries soliciting further information.

Atmospheric Rallway for Broadway.

We have recesived two communications-one from T. M. Brennan, M. E., of Nashville, Tenn, and one from J. E. Holmes, Superintendent of the Machine Department in the Cryital Palace

- upon the subject of an elevated railway for Broadway, in which it is proposed to propel the ears by condensed air. Mr. Brennan says,"The atmospheric system presents itself as pe culiarly adapted to the requirements of Cit railroads, from its complete absence of noise its safety, and the lightness of track necessary. Mr, Holmes says,-"Sooner or later, according to the length of the reign of fogyism, there wil an elevated railroad up Broadway, the carso which will be propelled by condensed air." It is remarkable that both of these gentlemen ving so far apart, should present nearly th ame ideas, at the same time, upon the sam subject. The means proposed in their letters, or carrying out the plan, are very similar, but do not require to be stated. We have no doubt ut an elevated railroad, worked upon the at mospheric system could be successfully carried out for Broadway, but this never will be done without the consent of the owners of property in that street, and it will be a long time before his is obtained.
Atmospheric railways are well understood in all their phases; they are no " untried schemes," and when it is determined to build such a road in this city, the knowledge to carry it out in al its details, will be found ready furnished for ap plication.

Baker's Furnace.
It will be recollected by our readers that we published on page 65 the economic results of Baker's furnace as tested at the Crystal Palace, in which it was stated that the amount of water evaporated was 11.457 lbs . of water by 1 lb . of coal. We also stated that this was the greatest amount of water evaporated by one pound of coal on record. We had been informed that the feed 'water used was taken cold from the Croton pipes; the statistics were furnished from the Crystal Palace. At that time we were aware that nearly $14 \frac{1}{2} \mathrm{lbs}$. of water from 212° had been set down as the theoretical evaporation of one pound of the best anthracite, and we referred to this in our remark. We therefore, with our usual caution, rather understated the results, because they appeared so extraor dinary. Another trial of the furnace will be made in the Crystal Palace, and Mr. Holmes, the Superintendent has requested us to consider his opinion as suspended until then. Inreference to our article referred to, Samue L. Dana, chemist of the Merrimack Print Works, at Lowell-good authority in himselfhas published an answer in the "Lowell Jour nal and Courier, ${ }^{"}$ in which it would appear that he is in possession of furnace statistics of no or dinary value. In his article he states that in 1840 a locomotive boiler on board the steamer Anthracite, heated by Player's furnace evaporated 12.40 lbs . of water from 212° by 1 lb . of coal;" also that in 1841 "an upright boiler of J. B. Francis', C. E., at the Massachusetts Mills in Lowell; evaporated 13.015 lbs . of water from 212° by 1 lb . of coal,"-a four day's trial.With two boilers, "Hayes' battery boiler," and an improved Cornish one, he (M. Dana) evaporated 13.69 and $13: 80 \mathrm{lbs}$. of water by one lb . of coal-in each case-from 212°, for several days together. He presents a number of other cases, nearly as good as these, and says, he hopes the zeal of improvers of boiler furnaces will take its starting point from the goal long since established, and leave that point far behind them on their march." So say we; at the same time there is one interesting inquiry which we have to make here, of all those who send us statistics of boiler evaporation, namely, the time occupied in the evaporation, as well as the quantity of water, and weight of fuel. Itis quite possible that one furnace may consume double the amount of fuel another does, to evaporate the same quantity of water and be just as economical, for if the one evaporates the same quantity in one half the time of the other, although it may require twice as much fuel to do so, it is very evident that for many purposes it will be the most economical to Its ownertime is as valuable as coal.

Death of a Venerable Lady
Mrs. Elizabeth Ellicott, who died at Ellicott's Mills, Md., on the 29th ult., was in the 92nd year of her age, and two weeks previous, in a
advance her fifty fourth year's subscription to the "National Intelligencer," a paper to the first number of which her hubband, George Ellicott, Sr., was a subscriber, as he was also to the first number of the "Baltimore American." Mrs. Ellicott was the last survivor of the numerous family after whom Ellicott'sMills was named. The men were famous inventors and distinguished millwrights.

LITERARY NOTICES.

Manufacturers and Inventors.

SCIENTIFIC AMERICAN

 s commenced about the20th September, each year, and Is the BEST PAPEREach'Volumecontains 416 pages of most valuabloreadmatter, and is illuatrated with over

500 MECHANICAL ENGRAVINGS

 NEW INVENTIONS.The SCIENTIFIO AMERICANss a WerkliJJour-
arts, sciences, and mechanice
having for its object the adrancement of the.
inttrests of hechanics, manofactorers and inventors.
ORIGINAL ORIGINAL ENGRAVINGS of NEW MECHANIOAL INVENTIONS, nearly all of he best inventions whichare patented at Washington contains a Wericy List of AMERICAN PATENIT:notices of the progress of all MECHANICAL AND SCIENTIFIC IMPROVEMENTS; practical directions on the Constrootion, Managment, and Uss of all kinds of MACHINERY. TOOLS, \&c. \&c.
It is printed whinew type on beautiful paper, and be ind of the year. of a LARGE VOLUME of 416 PAGER
ent Mlustrated with upwards of 500 MEOHANICAL ENGRA.
INGS. The Sci
no Bcientidc American is the Repertory of Patent In. cyclopedia of the useful and entertaining. The Patent
cole Olaima alone are worth ten times the subscription prioe every inventor.
ti

\qquad
unacturers and In

TERMB! TERMS! : TERMS :

One Copy, for One Year " Six Months	$\$ 2$
Five copies, for Six Months	\%
Ten Copies, for Six Month	*
Ten Copies, for Twelve Months	\$15
Fifteen Copies for Twelve Months	\$22
Twenty Copies for Twelve Month	12

outhern and Western Money taken at par for Sub Lettors should be directed (post-paid) to

