

Reported Officially for the Scientific America
LIST OF PATENT CLAIMS

 phia, Pa, and Davia Clark, of Schuy ikill Haven, Pa,
We claim the arran gement of a heater for the fee

 MrLL Sroves-By Thos. Barnott, of Beverly, Eng-
1and. Patented in England Jan. 8, 8552 :I a mamare

 detail described.
GANG PLOWS-By Chas. Bishop, of Normalk, \mathbf{O} :
I claim the mannor described of constructing the

 and combination of the simmering vesont with the
ball oock and the scumming trough, substantiall as described, and I Ilaim this arrabgement and combi-
nation, whother alone or in further combination
 scribed.
Beocon, the a aitator a rranged and operating in the
manner and for the purpose described. manner and for the purpose described.

 ing filled, and thus distilling the contents of one
boiler immediately after the other, as seen in the description of the work.
Second, the combinati

 quid contained in the boiler under operation, and to
aicortain when the contents of that boilior are dis-
tilled.

 Socond, I clain, in in combination with
false bottom and linig, as described. false bottom and liniog, as described
Third, I claim the arran gement of
sing chamber, in olombination with the return pipe
in

in the rertical retort. Fourth, I claim the

 tially as described

 part of the woight of the armatures of the ellectro
magnets, mounted upon slidiog guides, or their
maiu

 Samer and man and pressure rollers.
said mand
and olaim the adjustable stoad
 mandrei, and acting substa
for the purpose set forth.

 Yerted cups
and the othe
prosented.
 and uniform pressure of gas in the branc pippe
Which suplien the bunner, which will hot be ossen

 and operating mithin the
stantially as described.

 the lat
bed.

 combined with the auxiliary wheols a and auxiliary
convergig track and hub, substantiall jin the man-
ner specised ars specised.

 with concaritios in the
he manner set forth.

 imiting
set forth.
 liat by th ith tening wedge, having a lip for lap or
jito
tipen the share, in coop junction with the hebed od or iipped studs for further seacuring the same.

 result specified.

 cham ber, the flame being regulatad as described, and
the mhole arrangement being substantiall as set

 of it under the case, and all cappato of baing sot up
or a dijustof without the necossit ty of geting under
the case,
Gorgry ors-By John Tremper, of Buffalo, N. Y .
clait the conbination of the winding cords chains, retarders or oriscs, hub, and spin
and operating in the mannor set foti.
 Alexibe cord or chain, or equivalant thereto, at
tachod to rovolviog retarders, and to the drivin
andey

 Ct. Ass Burroxs-By A. W. Welton, of Cheshire rariegated colors upon the in inside of of glass cen
buttons, substantially in the mode described.

 atiog motion, and described.
Ialso claim the pivotod rod

 ne or another of the apertures in
ferent distances from its fulcrum.

[For the Scientific American.]
Colored Daguerreotypes.
I have long been a reader of your valuable journal, and have been much interested in maChemical Science, which have appeared from time to time in its columns. I have been experimenting on Heliochromy during my leisure hours tor a few weeks past, and am induced to give you the results of my experiments, in the hope that others may be led to prosecute them more successfully.
The discoveries of M. Niepce Victor, in He iochromy have been announced to the public for some time ; I first saw them on page 3 , Vol. 7,Scientific American, but I have heard of no sie repeating them. An outline of M. Niepce's process may be found in the "Annual of Scientific Discovery" for the year 1852; it is oubstantially the following:-Make a solution
of the chlorides of copper and iron, about one part of the mixed chloride with three or fou of water. The plate to be prepared is to be attached to the positive pole of a galvanic battery, the negative pole of which (a platinum plate) is immersed in the solution, and is then itself immersed for a short time, depending on plate rapidly changes from the chlorine of the mixed chlorides attacking its surface, to a red, ilac, brown, and even nearly black. It sould be taken out when the plate has acquired a lilac or brownish tint, if sufficiently coated to hide the silvered surtace completely,
if not, let it remain a little longer. With a battery of two of the ordinary Grove cups, changed to a Smee's, by removing the porous cups, and charging it with dilute sulphuric cid, so that hydrogen is not evolved too rapidy from the platinum plates, it will take ficiently. The plate should now be well washed in rain or distilled water and dried carefully over a spirit lamp. The color changes as the plate is heated through various
shades of brown and red, and is at its most sensitive state when it takes a cherry red. It should not, however, be heated much over 212° Fahr., or the surface will scale off. All these operations may be performed in open
daylight (avoiding, of course, the direct rays of the sun) ; indeed, a certain amount of light seems to be necessary, in the preparation of he plate. The plate, if well prepared, will ow.present a beautiful red enamelled-like surface, partly translucent, but still showing no part of the silvered surface beneath, and is ready for the camera.
The object to be copied, a colored lithograph will answer, is placed in the clear light of the sun, and the prepared plate exposed to it for time, varying with the brightness of the the atmosphere. It takes from two to three hours to produce an impression on the plate, nd from five to six to obtain a good picture If the process be successful, a perfect copy of
the original, in form and color, will now be presented on the plate (and it will resemble a miniature painting) but be much finer in detail. , diped, before pof the fluorid of sodium, the process will be much accelera ted and the colors preserved. I have tried va ious other accelerators-the chlorides of so hudrofluorine acid, chlorochromic acid perfluoride of chrome. They all acc the process very much, butdiminish the
liancy of the colors; the hydrofuoric liancy of the colors; the hydrofluoric
chlorochromic acids are the best. The hy luoric acid acts very well with red and colors, but is apt to change the brown black lines to a dark red. The other is be ter, but the plate s
I have taken very good pictures in an hour nd a balf, but itgenerally takes three or four The most annoying failures sometipot occur
from miscalculating the time, an taking out the plate a fine picture in form and colo is found, but not sufficiently developed. In such cases the surface can sometimes be removed by an alkaline solution, and the picture developed. A camera with an aperture in it for viewing the picture, would be a good ar rangement.
mical agents and heat very well, but are rapidly dissolved by the hyposulphite of soda. In one instance, I brought out a picture which was invisible when the plate was taken from the camera, by using the sulphate of iron and fichromate of potash, but the colors were
fainter than the original. In this case chlorochromic ecid was the accelerator.
I have not been able to produce colors on the mercurialized plate, though I have not experimented much on it. This presents a difficult but perhaps not impossible problem. It seems to me, though I have not tried it, that ne or more colors might be produced in the ordinary picture by exposing the mercurialized image to chemical agents before gilding. The colors in this case would beowing rather o chemistry than to Hillochromy.
M. Niepce says that no bodies but chlorine or chlorides are capable of producing colored images. I am inclined, however, to suspect that when the problem of instantaneous photographic images is solved, that fluorine will be tound as one of the principal, if not the principal, agent in their production.
I shall be happy to hear from other expeimenters, and shall be much pleased if any of them should make the discovery of instantaneous colored images. Great credit is due to MM. Becquerel and Niepce for their discoveries, and also for the readiness with which they have made them public. I ic tend to devote a part of the little leisure time I have to
the prosecuting of this interesting subject.

Dayton, Ohio.

P. S. - I omitted to mention that the plates sometimes become solarized by long exposure. When this is only partial the picture may sometimes be restored by alkaline solutions. A thin coating of some colorless varnish is also very advantageous to the picture. The pictures accelerated with the fluoride of sodium or the chlorochromic acid seem to be quite permanent in ordinary diffused light

Submarine Telegraph.

By our latest European exchanges we learn解 Cond infe of tectric communication, in cconhas been promoted by the European Teleraph Company, and one of its peculiar novelties is that it is being laid down along the old oach road, through Deptford, Greenwich, Shooters-hill, Dartford, Gravesend, Strood, Rochester, Chatham, Sittingbourne, Faversham, Canterbury, \&c., to Dover. As may be
known, the South-Eastern Railway Company are the proprietors of the present telegraph, and as the company would not sanction the mation of a second line of telegraph, the lan was devised of laying the wires uhich re conveyed under the London streets to the several telegraph stations. Sanction, was obtained of the different road trusts, and ome 200 or 300 workmen are now actively employed day and night on the works. The copper wires, six in number, are encased in utta percha; and being deposited in a kind of trough, constructed of Kyanised timber, it is laid in a trench dug in the road, some foot and a half from the surface. In order that here should not be the possibility of the are proved, are erected every mile. The proved, are erected every mile. The rks are proceeding with the utmost expe-
fon. A mile and a halt is completed eveAccording to the present arrangearis, two to Brussels, and two for the nean route. At present it is not wh whether there will be any intermedigraph is completed as far as Chatham from Cornhill.

Large Bollers.
The Royal Maill steamer Arabia, built for he Cunard line, is now getting her boilers on oard. They are of tubular construction, the tubes running athwart-ships, with the furnaess of the two boilers facing each other. The boilers are shipped in sections, and riveted together in the hold of the ship. They are the argest boilers ever constructed, and are in tended to supply steam to the largest engine ever built.

