

Machine for Sweeping Streetay
Joseph Sawyer, of the city of Boston, Mass hastaken measures to secure a patent for an improved machine fors weeping streets. Three brush wheels are attached to a carriage-two being placed at the front and one at the back part. The front brush wheels are placed horizontally under the carriage, one at each side, and as they rotate, they sweep the dirt into the centre underneath the machine, and at intervals they are made to rise and step, as it were, over the heap of dirt gathered to the centre. The brush wheel on the back of the machine is vertical, and is placed on a line to the central heaps of dirt, and sweeps them up as the machine moves along up a short inclined shute into a proper receptacle. The work ot sweeping the dirt into heaps, and up into the receptacle, is carried on until there is a full load in the receptacle. It would be a ood thing for this city if some more effectua means for keeping the streets clean was intro duced-New York streets are exceedingly dir ty, and yet no city in the world pays mor for keeping them clean.

Car and Portable Railroad.
J. F. Jones, of Louisburg, N. C., has take measures to secure a patent for an improve mentin car and portable railroads, the nature or which consists in the peculiar construction of the car, the body of which is suspended or hung upon pivots, so that it is allowed to swing, and thus keep the centre of gravity of the load over the track, which may be made of a very narrow gauge. The pivots by which the body of the car is suspended rest upon a frame which is supported by small gudgeons at the ends of the axles, said gudgeons passing through eyes, or loops attached to the frame By this arrangement much friction is a voided The coupling is so constructed as o allow th body to hang as low as possible, and this al lows it to be easily loaded. The rails are formed of detached pieces, connected by pins which are attached to the sleepers, and so con structed that the detached pieces can be laid either straight or curved.

Piston Packing.

P. Merriam and A. B. Darling, of North Adams, Mass., have taken measures to secure a patent for packing piston heads, stuffing boxes, \&c. India rubber or other elastic material is placed between the body of the piston head, and metallic rings. A selt-adjusting piston of equal radial pressure is thus produced. By reversing the position of the india rubber, a perfectly tight stuffing box is obtained. The india rubber being used as an intermediate by properly adjusting it an equal radial pressure will be created, and may be used for pistons, bellows, blowing cylinders, and pumps.

New Bun Cutting Machine.
Simon Ingersoll, of New York city, has taken measures to secure a patent for improvement in machinery for cutting bungs and plugs. The revolving cutter is operated in such a manner that it is fed in slowly by a cam while cutting, but withdraws it very ra pidly when it has done its work. The teed motion which moves the slab or plank out of which the bung is to be cut, operates the plank at intervals, between the motions of the cutter spindle, to the proper distance, for every plug to be cut.

Porta Mills

J. R. Howell, of Boston, and D. D. Lam bert, of New Haven, Conn., have taken mea sures to secure a patent for an improvement in portable mills, which consists in the employ ment of an oil fountain bush, so arranged as to hold and retain a constant supply of oil around the collar of the spindle and boxes, the boxes being entirely submerged in the oil. The upper stone is hung upon the spindle in such a manner that the ordinary bail is dis pensed with, and a perfect universal joint obtained. The runner stone is so attached to the spindle as to move up and down with it Now Corn Plantor.
Job Brown, of Peoria County, Ill., has ta ken measures to secure a patent tor a new ken measures to secure a patent tor a new
planter, which has new and peculiar shares
each being bevelled at the back, and having a groove in it. The hoppers are placed above the recesses, and the seed drops down into them, and then talls into the furrows made by the shares. The seed is distributed from the hoppers, by slides, in the common manner.

A New Styptic.

A physician of Rome has recently succeed d in discovering a liquid possessing so extraordinary a power of coagulating blood, that if to a large basin containing this fluid, one drop of the styptic be added, complete solidification ensues, so that the basin may be in-

Figure 1 is an outside view, and figure 2 is head. By turning the stock, the barrel, C , and angitudinal section of the Jaw Screw Dri- |driver, revolving to the right, the screw is ver, invented by Jacob W. Switzer, of Basil, driven in rapidly and with great ease; no hole Fairfield Co., Ohio, who has taken measures is required to be made with a gimblet, preto secure a patent therefor. Thisscrew driver vious to driving in the screw.
is operated like the stock-brace, only-it has spring jaws for holding the head of the screwnail, while the driver is inserted into the roove or notch in the head of the nail. The handle of the stock is broken off.
A is part of the handle, and B is the stock they are made in the usual manner; D is the shank of the driver, E. F F are spring jaws or embracing the head of the screw-nail. C is a barrel or tube surrounding the shank of the driver, and legs of the spring ja ws, F F. The spring jaws are festened to the shank of the driver by a pinge, which pacsaer through e slot, G, in said shank ; this slot allows the dri er to be thrust further out beyond the face of the jaws, or to be drawn within them. This operation is performed by having a righthanded thread cut on the shank, D, and a left handed thread; a, cut on the inside of the bar e, C, as shown in fig. 2 .
To drive in a screw-nail, the jaws are mad to embrace the head of thenail, and are com pressed on to them by turning the barrel, C to the right, the driver then being, as repre sented, inserted into the crease of the nail

Hanley's Castors for the Legs of Pianofortes,

The annexed figures represent an improve ment in Castors, invented bv J. Hanley, No 10 North William street, New Yórk City. Figure 1 represents a section of the frame of the castor, with a section of the cap upon it. Fig. 2 is a section of the wheel or roller showing it and the jourmals cast in one pieee. The same letters refer to like parts. The rame, A, of the castor and its axis, B; is mad

The following is its preparation :-Take eight ounces of gum benzoin, one pound of alum, and ten pints of water. Boil all together, for the space of eight hours, in an earthenware glazed vessel, frequently stirring the mass, and adding water sufficient to make up the original quantity of that lost by the ebullition, taking care, however, to add the water so gradually that boiling may not be suspended. The liquid portion of the compound is now to be strained off, and preserved in well-corked bottles.-[Albany Register.
LThe alum, itself, we apprehend, is the sole styptic; it is now used for this purpose by

To release the jaws from the head of the crew, all that is necessary to be done is simply to grasp the barrel, C, firmlywith theleft hand and keep turning in the same direction. The slot, G , allows the driver to be forced beyond the jaws, when the barrel is grasped, and his relieves them
To draw a screw from a counter-sink, the driver, E , is worked to project beyond the jaws (which is done by holding on to the bar rel with the left hand and turning with the right), and then it is inserted into the crease of the head of the screw, and the stock is turned to the left, the barrel turning round with the driver. After the head is drawn out a short distance, the barrel, C, is held firm with the left hand, and the jaws are then left free, and allowed to grasp the head of the nail when this is done, the barrel, C , is turne round with the left hand, to bring it down firm on the jaws, after which the driver, jaws and barrel are turned to the left, and the screw is drawn out rapidly.
More information may be obtaired by let ter addressed to the inventor.
shape and has a broad base, \mathbf{C}; the apex ter minates with a pin, D, which is of wroughtiron and inserted in the mould of the casting, and is thus moulded along with the axis. The end of this pin passes through the centre of the cap at E , and is rivetted on the outside so as to hold the frame and the cap together, but allows the frame to revolve in the cap. The frame, A, is made with two channels, F (one only shown) cast in it, to answer for bearing

of $G \mathrm{G}$, to the wheel or roller, H, to work The wheel or roller is secured in its plase? the pins, I I, of wrought-iron, whicit, moulded in the casting; these pins are beit ver the journals of the wheel, as shown by the dotted lines, and it is thus secured in its place. The wheel or roller, H , is cast with ournals in one piece. The coinmon castors have no conical upper axis, but a straightone
axes or journals of the common castor rolle are a separate spindle, not cast along with the wheel. The evident improvements of thi castor for furniture will be plain to every ca binet or furniture maker.
Measures have been taken to secure a patent. More information may be obtained by letter addressed to Mr. Hanley.

Printing Types.

We have a deep respect for the memory of John Guttenberg, the inventor of movable types. It was not the printing press which gave the grand impetus to modern civilization and developed the age of discovery. No, it was the movable type of the clear-headed German of Mentz. The press employed for a long time to take impressions, after the invention of movable type, (printing blocks were known and used before that), was a screw-press, but no sooner was the improvement made in the type, than a reformation in every department of knowledge commenced. All hail then, we say, to the memory of Guttenberg.
If old German John was now to arise from his grave and see the improvements which have been made in the manufacture of type since his day, he would be as greatly surprised, if not more so, than at the improvement which he himself discovered, as being superior to that of the old pen-made books. Of this weare fully convinced by examining a specimen book of printing type manufactured by H. H. Green, type founder, our next door neighbor, (128 Fulton street, New York). This work contains the most beautiful samples of different kinds of type that we have ver seen, the manufacturer of such type may well feel proud of what he has to offer to the public as specimens for all kinds of printing -plain and ornamental.

City Rallroads.

The railroads which have been constructed in New York City, have not, as yet relieved the principal street-Broadway. It is almost mpossible for pedestrians to cross Broadway below the Park during any time of the day bebween 7 A. M. and 8 P. M. Females are in danger of losing their lives while crossing; they have to run forlife or death. It has been calculated that 500 omnibuses pass a single point in Broadway every hour, or more than 8 every minute. It is easy to see from this that itis almost impossible for persons to cross from one side of the street to the other. To relieve the street, it is proposed to build a rallroad with a triple track, each 4 feet wide, and to employ 120 cars, so as to despatch one every minute each way, or 60 an hour; and it is said that these carswill, carry more passen. gers than all the omnibuses. It is proposed to lay down a grooved rail that will not interfere with carts and carriages. A single horse has drawn thirty tons at the rate of 63.4 miles per hour on the Ohio and Baltimore railroad, and it is contended that the great amount of load which a horse can draw on railroad, in comparison with what it can over our paved streets, should at onot every reasonable person to give his 0 the railroad for passengers, in prefe:- - e to the omnibus.
On the other hand, the owners or roperty assert that a railroad will ina 6 the character of the street for busider, $\sim \sim$ destroy it as a public thoroughfare for promenade and pleasure. Scienct, progress, and reason, appear to be on the side of those who advocate the railroad, but the only arguments which can safely be applied, are those of facts. If a railroad is more dangerous, does not look well to the eye (this is for the taste of the promenaders), and is more inconvenient for private carriages, so as to prevent them passing through Broadway for business or pleasure ; in short, if the advantages of the railroad are less than the present omnibus system, it would be folly to build one; here lies the gist of the whole question. Every person can see that oome reform is required to remove the obstrucion to the free crossing of the street; what shall that reform be? is the question; the only rational one propos'ed is the railroad.
By the latêst news from Europe we learn that the American ship Mobile was wrecked on the coast of Ireland, and all but threa of those on board perished.

