Pingoforprs-By James \& John McDonald,
the York
the
 ner substantially as sat forth, to with the pines maing
placed horizontall at the botom of the case below
phen the pianoforte action, and the wind chest placed be-
tow the font ond of the pianoforte keys
tion such
manner manner as to allow
ly by the said key
Second, the manere of opening the valves of the
fute or wind pipes, to play an octave lower than the fute or wind pipes, to play an octave lower than the
piano either at the same time that they are being
play
 upon by th.
piano key.
Privrive Prissse-By J. G. Nicolay, of Pitts-
field, Mll: I Io not claim the use of conical impres-

 eonical distributing inking oriliers adapted thereto

and with a rotating wheel or disc, substantially | described |
| :---: |
| I also ciai |

Prasso clain, in combination with the conical im
the co clamp cyinders, the position and arrangement of
the pressing cylinders, the position and darangement oo
the llamp consisting of the theal plate, pring , and
arm or lever, which retains the paper arm or le, ler, which retains the paper at the required
angle to receive the impression and rele angle to reeieive the impression and release the same
Jhor the impression is taken, sumstantially as set
forth.

 different window frames and to adapt itseif to the va its being put into and taken out of the frame, with-
out removing the stop strips therefrom, the two parts

 nation of the

 ted by radius rods, in the man
pose set forth and described.
 Sharps, of Hartford, Ct. Patented in England, Apri
$22,1852:$ I claim the priming of fre:-arms, by throw

 or immorable bead strips, and bands, and to remore
the mashat at pleasure from the frame, in the manne
the sta

 but capable of tristing betwen the ends, substan-
tially as and for tion purpose desribed.
Secona, making one part of the fork or crutch

 balance, the said bending or motion or t
cruth being for the purposo of alo
mit the ing impuse in the above direction.
ChuRss-By L. A. Brown \& Hubard Bigelow, of
Hartford, Ct. (assignors to
H.
K. W. W. Welch)

 in the manner and for the purposes, substantially a
set forth and describcc. Cooring Stove-by ${ }^{\text {Dr }}$
N. H.

 Table FansBoston, Mass. and Legs-By Walter Bryent, of Boston, Mass.
Nоте-Five of the patents issued in the above list and Foreign Patent Agency

Corrosion of Metals in Water.

Having had some inquiries made of us respecting the amount of corrosion which iron
undergoes in water, we present the following undergoes in water, we present the following
remarks of Mr. Adie, of Liverpool, Eng. which were read some time ggo before the Institute of Civil Engineers. The object of his experiment was to test the rate of corrosion of metals in fresh water, brine, and sea water.
These experiments were made with weigh ed pieces of metal immersed in the three so lutions under examination. Those which are
compared together were tried in every respect under similar circumstances, as to weight and surface of metal; size and form of vessel quantity of water employed; light and tem-

perature

The experiments on zinc were made with that metal in connection with a piece of copper, so as to form a galvanic couple; for zinc, when unconnected with a less
oxidizable metal, is soon covered with a crust oxidizable metal, is soon covered with a crust
of oxide, so that pieces, after a month's im.
mersion in water, are found to be slightly hea-
vier than at the beginning of the experiment. vier than at the beginning of the experiment.
This is not the case when a piece of silver or This is not the case when a piece of silver or
copper is in metallic connection with zinc for then the white oxide of the metal is gradually precipitated to the bottom of the containing vessel.

A plate of zinc, 1 superficial inch in area immersed for 60 days in sea water, lost $1 \cdot 6$ grains.
A similar experiment in fresh water lost $1 \cdot 15$ grains.
A plate of zinc, 7 superficial inches in area immersed for 96 days in fresh water, lost $4 \cdot 9$ grains. trated solution bove for dissolved air, lost 1.4 grains.
Wrought iron wire :-
Twenty pieces of iron, weighing 374 grains, mmersed for 80 days in fresh water, lost 1.9 immers.
A similar experiment in sea water, lost 2.6 rains.
A similar experiment in brine, lost 0.1 grains.
Cast iron :-
Three rods of cast iron, weighing 787 grains mmersed for 62 days in fresh water, lost 1.6 grains.
A similar experiment in sea water lost 2.0 rains.
A similar experiment in brine lost 0.4 grains.
On comparing together the loss of weight of metal in the fresh water, sea water, and brine, it will be observed, that in sea water the corrosion is about one-third more than in fresh water; while in brine, the loss of weigh is about one tourth part of the loss in fresh water, and one-fifth part of that experienced in sea water; showing that brine possesses from corrosion. The carbonates of potash and soda are still more effectual in arresting oxidation; for in saturated solutions of these salts, iron wire remained immersed for sixty days without any amount of corrosion being detected. The surface of the plate of zinc when taken fram the brine, was the same as at the commencement of the experiment, excepting in three spots, where there was deep corrosion. The principal of these being around the point, where the copper wire conected the plate with the negative element The difference between fresh water and sea in the reverse order of the quantities of oxyen dissolved by them, as given in the pre ceding experiments; where the sea water to the fresh as 78 to 85 . The principle on which the preserving power of alcohol is attempted to be explained may, in like manner be here applied to pure water. Although the experiments on the corrosion of iron were continued for eighty days, the difference beween the action of common water and brin may be made apparent in one day. In th resh water, the hydrated peroxide of iron is een forming; while in the brine, only a slight tinge of a greenish infusion can be de-
tected, a sure indication of the scarcity of oxytected, a sure indication of the scarcity of oxy
The experiments given to determine the respective rates of corrosion in fresh and sea water, are only correct for pieces of meta wholly immersed in them. Where the surfaces are subject to be wet and dry, the cor rosive effect of sea water will greatly increase; on the same principle that iron once oated with rust decays much faster after th ust has provided a lodgement for mossture Take for example a bar of iron in a field, and similar piece on the deck of a ship. On the first, the dew of night deposits water, which corrodes until the return of the sun
dries it off. On the second, on the deck, it deposits spray, which acts like the dew until the sun dries it off; but when dried there is left a thin deposit of salt, with a powrful affinity for moisture, which on the re tmosphere, long before the dew wets the metal in the field. Thus it is that a coating f salt or rust keeps metals much longer in wet state than if their surfaces were clean.
The steam propeller yacht, Col. John Ste vens, has been sold to the Newfoundland Te

Liverpool for New York, and obtain news to be sent over the telegraph wires.

Heat of the Body.

The phenomena of heat in the body is something like that produced by the combustion of fuel, such as coal, only in the body the combustion is slow and the heat far lower than that of flame. The act of breathing is very like the bellows of a smith, and our food is very much the same as the coals which he puts upon his fire. It is probable that some heat may be produced in the various secreting organs of the body, by the themical action which takes place in them.From these two sources animal heat is most probably derived. It is positively certain that the blood is heated at least one degree of Fahrenheit in passing through the lungs; and hat arterial blood is warmer than venous. Most of the phenomena which occur in the production of heat may be explained by attributing it to a combination or a union of the oxygen of the air with the carbon of the blood in the lungs.
This supply of animal heat enables the body to resist the fatal effects of exposure to a ow temperature. In the polar regions the hermometer often falls to 108 or 109 degrees below zero; and yet the power of evolving heat, possessed by our bodies, enables us to esist this degree of cold. The temperature of our bodies in that region is about the same hat it would be were they in the warm regions near the equatar. The thermometer, it plunged into the blood of man, in both siuations mentioned, would indicate a temperature about the same. Our bodies have early the same temperature in both places ecause, so to speak, and it is not very absurd the combustion, or fire in the lungs, gives out more heat, it burns with greater intensity in he polar regions than in the equatorial. We all know that a large fire will warm our ooms, no matter how cold it may be. We can give our rooms the same temperature in winter that they have in summer, if we reguate our fires accordingly. A little more fuel is all that is requisite for that purpose. Naure has so ordered, that when our bodies are a cold temperature, we inspire more air han when theyarein-eold temperare. In other words, she compels us to take in more fuel and increase the combustion in the lungs.
The
The Esquimaux eats blubber, which is mostly all carbon, and the Laps drink plenty of grease. In warm countries the food of the Lap would kill the negro, and the food of the ations of the West Indies would not be able to keep the Esquimaux from perishing with to kee
The temperature of the human body, and f most warm-blooded animals, is from 98 to 00 degrees Fahrenheit, and is effected but a ew degrees by any variation of that of the urrounding atmosphere. Animals are warmblooded when they can preserve nearly an qual temperature, in despite of the atmospheric vicissitudes from heat to cold, and rom cold to heat. They have a temperature of their own, independent of atmospheric hanges
The time will soon arrive when thicker clothing must be worn by our citizens at the north. They must line their vests well along he back bone, and provide against freezing. It is a fact that warm clothes tend to save ood, as all animals eat food in proportion to the cold of the atmosphere. This is the eason why cattle that are well housed conume less food, and keep in better condition than those which are shelterless and exposed.

Dangerous Feat.

Quite a sensation was created in the viciniy of Broadway and Fulton st., this city, on Wednesday morning last week, by a man cimbing up the steeple of St. Paul's Church, by the lightning rod on the outside. He went up for the purpose of putting a rope around below the ball, by which to haul up the ladders to be used in re-painting the steeple. The extraordinary feat was performed by Joseph Dawson, a man 53 years of age. his is the fourth time he has ascended the ame steeple in that manner during the last en years. St. Paul's steeple is over 200 feet high, and we understand that the painting of it costs about $\$ 600$.

