Scimtiat Amoricme.

Inventors-The sclentific American The objects of mechanical inventions are to furnish the comforts and conveniences on life, and this ohject has been accomplished suc cessfully in most of the departments of me chanism. Inventors have done much, but i is their duty to do more; we are for from having approached that perfection which is a - tainable; the field for improvement is a great field, it is yet unbounded, and we have n) doubs but inventors will yet change nearly the whole face of the mechanical world. They are a class of men whose perseverence and energy are alike notorious; their business is like digying for gold, and their wort like that of the miners-some valuable in provements being the result of accidental dis. covery, but a far greater number requiring great ammount of thought and experiment. before they are brought betore the public Bacon says-" Antiquity a attributed divine bo. nors to inventors, bitt conferred only heroic honors upon those who deserve well in civil affirs, for the benefits of inventions extend to all mankind, but civil benefits only to pari cular countries; and these civil benefits sel. dom descend to more than a few ages-where. as inventions are perpetuated through al time." And Dr. Herschel remarks,"that any accession to our knowledge of nature is see so ner or later, to make itself felt in som practiral application. And a benefit conferred on science by the casual observation or shrewd remark of even an unscientific or illiterate person iufallibly repays itself with interes! though in a way that might never at first have been contemplated."
He should be deemed as great a benefactor who brings into existence an article or machine which will makeus wiser or happier, as he who confers a benefit upon the communit in any other way. But inventors owe a duty to themselves, while they benefit the world for many valuable improvements which have cost them hours of toilsome mental and perhaps physical labor, have been appropriated to public use, and the inventor left withou the least remuneration for his services. W ${ }_{e}$ believe "the laborer is worthy ot his hire," -and he is not the less entitled to it who la bors for the general good in the field of inven. tion, instead of laboring for individual advan. tage. Our laws have given to inventors an opportunity ol protecting themselves and ob'aining a remuneration for their services, and they should do it; but to secure their right they must seek to protect them in season-as soon as their inventions are complete, or eve as soon as valuable ideas are conceived, is the time to claim their protection; we shall ren. der inventors all the aid in our power in per fecting their inventoons by imparting to them the requisite informa'ion, and in protectin them from piracy. The increased circulation of the Scientific American renders more at tention to this department of our business in dispensable, but notwithstanding this, we are still fully prepared to carefully examine every case that comes under our superintendence The number of examinations of new inven. tions bas also increased so as to require an ad citoual examining force in order to attend promptly to all the numerous cases under ou charge. No case is, however, permitted to leave the office until it has passed the ordea ot our criticism. This is perhaps one of the principal reasons of our great success in ob taining Letters Patents for new inventions We sometites fail, but never for want of tha care with which business of this kind mus be transacted. This extensive Patent Office business enables us to furnish the readers o the Scientific American with a great amount of valuable infurmation
Our readers are aware that we labor fo their interests, and they in turn labor for us A long list of subscribers is trequently for warded to us, with the assurance of approba tion and many thanks for the Scientific Ame rican, which wetkly finds its way to thei homes and firesides, loaded with new improve. ments, new illustrations, and suggestions, it short, all that is valuable collected from our immense resources, the whole scrutinized, cri immense resources, the whole scrutinized, cri

We have every inducement to prosecute ou of science and truth and a journal of correct intormation in regard to the mechanical news of the day-a pubication which dare speak out and expose humbugs, inconsistencies, and false theories; o which the present age is remarkable, as wel as remarkable for its great improvements and discoveries.

Recent Forelgn Inventions.
Hat to Fit every Head - Andrew Fulon, of Glasgow, patentee.-This improve nent consists in adapting to hats, helmets and other coverings for the head, a fiexible padded lining which adapts itself readily to the exact contour of the head of the wearer and thus secures a good fit, while it also en -ures all the ease and comport derivable from
the weariug of an easy cap. The lining is the weariug of an easy cap. The lining is
held to the sides of the head by gentle springs ind dues not come so close to the interior, but that a space is left at certain parts for the ddmission of air for ventilation.-| London Mechanics Magazine
IWe commend this su'joct to the attention of our hatters, it is an in vention of a most de--irable character, and ths hatter who first inroduces such an improvement among us hould, and no doubt would, receive a very iberal patronage.
Improted Process for Refining Gold. A patent bas been recently $t_{\text {aken }}$ out by Mr. Petrie, of London, for an improverment in what is termed the "parting" process by re finers, and which is said to promise very im portant results. The refiners alloy, consisting or one part impure gold and three partssilver granulated in the usual manner, is placed in a number of small cells or cylinders, placed up. ight on an incline, between two paralle ails, which may, if desired, form flues, where y the cells are warmed while in action Hot nitric acid is kept continually dropping from a tap into the highest cell, and having passed through the mass of alloy, and through a false bottom, ascends on the other side of a
diaphragm, and overflows into the next cell ; rom thence it flows into all the cells in succession. From time to time the upper cell is removed, and another, containing fresh alloy is placed at the bottom of the series, the whole being moved up the incline. By the me the nitric acid reaches the granular sur ces, and as each cell is raised con antly in contact with more energetic acid val, the whole is dissolved, and the gold left pure in a spongy state. There is also an ar rangement for condensing the nitrous fumes, which are conducted by stoneware tubes chrough an apparatus called a gas collector into an oxidator. They are alterwards drawn off by pneumatic suction, are condensed int resh strong nitric acid, which flows out in continuous stream
Artificial Blocis for Hybraulic Purposes - The material called hydraulic lime yenerally used for engineers work under wa er, is a silicate of lime, in a somewhat nas eent state. A discovery has been made by 4. Berard, of Paris, of a most valuable pro cess tor manufacturing blocks for hydraulic purposes, and particularly submarine ones.The commonest argil is employed by the inventor, which is a silicate, with a base of alu. nna; a block of any required dimensions is, herefore, constructed of unburnt bricks, take rom the field and stratifed in layers, with yrating. An outer casing of unburnt bricks a bort distance all round the block is filled with charcod dust, the fire is placed at the base of the block, it soon rises, and heats the mass o a temperature which will soften argil, the ontraction causes sinkings and vacancies, which must be filled up as they occur. When sufficiently burnt, the outer casings, which will then be burnt bricks, may be taken down, and the block removed to its may be made of any shape or size, having no limit but the possibility of carriage; and, when the operation is properly conducted, the solidity of the substance is remarkable; it requires reat force to break them, iron instruments will not scratch the surlace, steel scarcely
mark them; and as concentrated nitric or sul phuric acid, or the most energetic alkaline sothey will be not have the least effect on them of sea or any uther water
Desiliverization of Lead by Zinc.-Dr. Karsten, a German chemist, several years ago made some experiments with lead and zinc, and found that when a mixture of these metals was allowed to cool very gradually, lead with a minute trace of zinc was found at the bottom of the crucibe, and zinc with a small amount of silver at the top. It the lead contained silver, it was almost entirely trans. ferred to the zinc. Hearing that in Carmarthen silver is withdrawn from lead by means ot zinc, he resumed his examination of the ubject.
He found that silver may be entirely sepaated from lead by zinc, and that the tollow. ing method gives the best results :-A tube cast-iron $1 \frac{1}{2}$ in:h in diameter is firted to the cru ible, so that the desilverized lead may be let off irom the bottom. One end of this tube dipping nearly to the bottom of the crucible, turnished with a slide moving in grooves the edye of the crucible, so that it can be shu when required by means of a rod. In this way the strea n of melted lead may be regu lated, and the fall of level gradual and uni form. In the crucible were put 25 cwts . of lead, containing seven eighths of an ounce silver to the cwt, and 4 cwt. of zinc. The whole was then fused, and stirred together for one hour at a bright red heat. This large amount of zinc was used because it was inintendad to attempt a process of concentration in which the same quantity of zinc should serve to desilverize subsequent charges of lead. After the stirring apparatus was withdiawn, and the melted mass kept for four hours at a red heat, the lead, perfectly freed from silver, was drawn off until only about 6 cwts . of metal remained in the crucible. To this residue a second 25 cwt . of zinc were likewise added, for reasons given below. A tourth, fifth, and sixth charge of lead were introduced and treated in like manner, 2 cwt . of zinc having again been adde to the fourth charge. The lead drawn off, in each case, was entirely freed from silver.-
But when a seventh charge was introduced But when a seventh charge was introduced
without an addition of zinc, the lead, when without an addition of zinc, the lead, when ths of an ounce to the cwt. The desilveriz ing of 150 cwt . of lead in this manner requires 8 cwt . or $5 \frac{1}{\frac{1}{2}}$ per cent. of zinc, a quantity differing widely from that indicated by former experiments-namely, $1 \downarrow$ per cent.
An addition of $1 \frac{1}{2}$ per cent. of zinc is quite sufficient for the perfect desilverization of lead when only one charge is worked. Thus
2.5 cwt ot lead may very well be freed trom silver 42 lbs of zinc, but the difficulty of separating the smalı quantity of argentuterous metal from the desilverized zinc is so great that this plan is not practicable. On the other hand, there is a certain limit to the size of the crucible, which cannot be exceeded, and recourse must, therefore, be had, to a process of concentration. The silver is separated from the lead very imperfectly, if twice or thrice as much zinc as is required for one charge of lead is added at once, with the view
of making it serve for several charges. It is of making it serve for several charges. It is
likewise imperfect when, on introducing into the wise imperfect when, on introducing
the crucible the several charges of lead, the if per cent. needed for desilvering the lead is added with each charge. It, therefore, with reierence to the above example, the first melting is made with 25 cwt . of lead, and 42 lbs . of zi c , the second, third. tourth, \&c., charges (added to the residue in the crucible) must also consist of 25 cwt . of lead and 42 lbs . of zinc. The cause of the unfavorable result of the process attempted by the author lies in the necessity for stirring the melted metals The oxidation of the lead and zinc at the s

The rocess al ways retains a portion of lead sufficlent for the retining of the silver af er the zinc has been separated from the mixture; and the alloy of silver and lead remains in the distillation muffle. If the per centage of lead is not suffi:ient for this purpose, more nust be added, in order that in the distilla
distillatio which is afterwards cupelled. The does not present any author had mufllss constructed which, except a slit t of an inch in diameter, were quite closed for a height of 4 inches from the bottom. The slit could be closed and re oppened in the usual manner, when the distillation being completed, it was necessary to draw off the remainining argentiferous lead. Such a mufle was charged for each distillation with cwt . of the metallic alloy of zinc, lead, and silver. The product of four distillations of a mixture which, according to the most careful assays, containe: 474 ozs. of silver, was 242 bs. of lead and $449-44$ of silver. The loss of silver amounted, herefore, to $31-22$ oz.; his owing chiety to the scattering of sma globules in the muflls, and it partly remains in the scum, from which it may be again recovere
\&c.
To Coat Iron with Tin.-The tin is first melted, with a stratum of chloride of zinc and sal ammoniac on its surface, and the iron or metal to be coated is immersed in the molten metal until sufficiently covered.

Great Industrial Bailiond Excursion. One of che greatest and most interesting industrial entertainments came off on Thur day, the 16 th inst., which we have for a long time noticed. It was given by the distinguished firm of Rogers, Ketchum, \& Grosvenor, of Patterson, N. J., to their workmen. This irm is the most extensive locomotive en gine builders in the United States, and em ploy 800 hands steadily in the construction or engines, \&c. There appears to be a kindly good feeling existing bet ween themselves and their workmen, which should especially cha racterise all such manufacturing establishnents. At the time of the said excursion, the numerous intelligent and hardy machinists, engineers, \&c., had just completed a large and beautiful locomotive engine, one of the best upon the continent; it was got up with despatch, and in a manner so highly sa. tislactory, that the proprietors, upon its com pletion, proposed that the builders in perso should make a practical test of its power and operation; nine cars were accordingly se-
lected, to which the new engine was to be lected, to which the new engine was to be
applied, and Mr. Hobbs, superintendent of the applied, and Mr. Hobbs, superintendent of the Union Road, placed in charge. The arrange
ments of the day were planned and carried out by the workmen of the company.and they wer carried out with decided satisfaction. The procession repaired at an early hour to Congress Hall, the boarding place of Mr. Rogers, who was most enthusiastically greeted as the Pioneer of New Jersey, in the locomotive ine, and from thence to Jersey City."
The whole proceediogs of the day evinced the most spirited, social and enthusiastic feeling which New Jersey perhaps ever witnessed. It was a great day for the me chanics of Paterson. It does us good to hear of a festival of this kind, as it speaks the teelings of the employers and the employed toward each other. Such generous noble acts are not lost to the company, they are duly appreciated, and will be returned four fold by diligence, enterprize, and confidence. Holidays of this kind might with advantage be much more frequent.
The locomotive first above referred to was maufactured for the Camden and Amboy Railroad Company. The locomotive engine works of Rogers, Ketcham, \& Grosvenor manufacture on an average two locomotive en-
gints, and from twenty to twenty-five cals for passengers per week. This is an immen: e business, unequalled by any firm in the United States.

Nolice to Engineers.
On our ailvertising pasee will be found an advertisement of an engineer who wants a situation. We know him to be a man of experience, well acquainted with marine enyines, knows how to plan and construct them. For a long time he has superiutended the construction of marine enyines, especially those for propellers, respectirg which his knowledge and experience are very extensive.
The New York and Erie canal enlargement now to go on until completed-this canal as been in a halt hanged state for ten 3 ear owing to the machiuations of interested 1

