Stinntific Ameritam.

Scientific ${ }^{\text {rir }}$ American
 BY MUNN \& COMPANY.

Stoke日 \& Bro., Philadelphia.
G.J. LeCount \&Strong, Ban Franeisoc, Oal G.J. LeCount \&Strong, Ban Mrane
Cooke, Kinney \& Oo.
B. Dawson Monto B. Da, Ron, Montreai, o. .
M. Boullemet, Mobile, Ala. M. Boullemet, Mobile, Ala.
M. W. Wiley, New Orleans, La.
E. G. Fuller, Halifax, N.

Responsible Agents may also be found in all the
principal cities and towns in the United States Terme $\$ \$$ a- year- $\$ 1$ in advance and the remain der in 6 menths.

CSEMT RERETPS.

Alum Made in the Manufacture of Candies We learn by the "Comptes Rendus," that J. Cambaceres, has endeavored to get a useful product in the manufacture of fatty acids into candles. Tallow in the manufacture of stea aric candles, is saponified with lime, then the lime is separated from the fatty matter by sulphuric acid, which combines with the line forming the sulphate of lime, and setting the fatty stearic acid free, thereby fitting it for bleaching, and being made into beautiful sperm-like candles. Instead of using lime to saponify the tallow, M. Cambasceres employs soda or potash ley, and adds clay. The soap containing an excess of the alkalı acts upon the clay so as to dissolve the alumina in it which combines with the fatty matter forming an insoluble aluminous soap. By the addition of sulphuric acid to this, the fatty mat ters are set free, and the product is the suli phate of lime, and when clay can be found free from iron, and near a candle-factory, this process is worth a trial by some of our spirited candle makers.

Raneid Butter.

The "Echo du Monde Savant" says:-A farmer in the vicinity of Brussels having succeeded in removing the bad smell and taste of some butter by mixing it with chloride of lime, he was encouraged by this experiment and he has restored to butter the taste and odor of which were insupportable, all the sweetness of fresh butter. This operation is extremely simple and practicable by all. It consists simply in working the butter in a sufficient quantity of water, in which from 25 to 30 drops of chloride of lime have been adde to every two pounds of butter. After hav: mixed it till all its parts are in contact the water, it may be left in it for an ' two, afterwards withdrawn and worbed ogain in clear water. The chloride of lime having nothing injurious in it, can with mented; but after having var ment, it was found that from
 thirty drops to every two r.ick butter were sufficient.
Another method of restoring swenthess ont flavor to rancid butter, said to be very wach tual by those who have tried it, is put it into a churn witn new mill! and asew it till all the old salt and rarcidity is removed, atter which it is to be taken from the churn, worked and salted afresh.
[The above should be triei on a sr all scale first.
To multiply any number less thar: 100 by 11 -add the two figures composing the number together, place the sum between the same two figures, if this sum be less than 10 ; if 10 or more than 10 , add 1 to the left hand figure, and place the unit between the two figures so taken. Example : $-44 \times 11=484$: the two fours being added make 8, which is the second figure. Thus multiplying by 11 may be as readily performedin the mind, when the multiplicand is less than 100 , as multiplying by 10 .

MIACHINE FOR CUTTING VENEERS.
Figure 1.
Figure 2.

The annexed engravings are a front eleva- 1 attached to frame, D ; this wheel, L , meshes on (fig. 1), and a transerse vertical section into pinion \mathcal{M}, which has its axis at b, in beam
(fig. 2) of an improved machine for cutting veneerings, invented by Peregrine White of Jackson, Waldo Co., Me., who has taken measures to secure a patent for it. The same etters rever to like parts on both figures.
The invention relates to the cutting of veneers, in the form of volutes, from solid logs f wood ; the \log is ted to the knife in a peculiar manner to accomplish the object.
A A are the four posts of the machine; B is the sill or base beam; C is a hrorizontal knife, permanently secured bet:.: \in en the two back posts, A A. D : cross top beam, c, beiag $: x$ aen the front and ack post, A. tween them. probles of these centres tween them. ave toother visels G, which mesh into pinions, H , on I, as shown in fig. 2 . J is the
One at one end of shaft I
and F , , in lich meshes into a worm wheel, L i^{*} axis in a suspended bearing,

GIDEON DAVIS'S NEW TUYERE. Figure 1.

Eigure 2.

A new tuyere iron has been invented by Gideon Davis, of Loydsville, Ohio, which is represented in the annexed engraving. An im portant result is attained in the construction of this tuyere namely the supply of a constant blast of cool air upon the portion of the tuyere adjoining the fire, and at the same time a blast of hot air upon the coal ; the manner in which The pinion, M, works the rack, N, on the ander side of slide 0 , whichis placed between the posts, A A, and rests on beam c. P P are two inclined planes on the upper surface of mide, 0 . These inclines bear againet blocks, R R, which ark. ...cured between the front and back posts, A.
S S are rods, the lower ends of which are secured to the bar, b. The upper ends of these rods are attached to the lower ends of the angular frame, T , by the connections, e e. This angular frame, T , re-ts upon points, $f f$, on the cross-piece, g, of posts, A. U is a weight suspended from the apex of T.
Operation-Motion being appliedjfto the driving pulley, J , the pinions, H , communicate motion to the wheels, G G, and the revolving centres, E E, which rotate the log, F, secured between them. As the log rotates, it acts against the stationary knife, C, which cuts the veneers from the same. The screw, K , by turning the wheel, L , and its mo. ing pinion, M , drives the rack, N , of

this is accomplished will be readily understood by the accompanying description and engra vings, in which fig. 1 is a perspective view and figure 2 a vertical longitudinal section through the centre, showing its application to a smith's forge, and also its connection with a bellows. A is a hemispherical cast-iron hamber, with a movable tront plate, B, se.
the inclined slides, 0 , which are moved along from the highest part to the bottom of the inelines, pressing against the stops, R R, as the \log is being cut from its greatest circumference into the veneerings. By this action, as the weight, U, on the triangular frame, exerts a reat lifting power on frame, D, through the trods, $S \mathrm{~S}$, the said frame is gradually slid upwards as the log is being cut, thus bringing the centres, E E, upwards closer and closer to the knife, C , as the \log is cut, the screw, K, graduating the approach of the centres to the knife. Thus it will be seen that the log will be cut in the form of a thin volute for veneering, the thickness of which will depend upon the thread of screw, K, and the fineness of the gearing connected with it to move the inclined slides taster or slower to allow the centres, E , to be elevated by the weight, U . This can be regulated as desired. This machine for cutting veneers is very simple, and the manner of feeding the log to the knife is very ingenuous indeed.
More information may be obtained by letter addressed to the inventor.
$\overline{\text { cured to it by couplings, in the flanges, } p, \text { or }}$ in any other convenient manner, having the tapering pipe, d, cast within its centre, and extending within the chamber, nearly to the plate, n, and without the plate for the reception of the blast-pipe of the bellows, A , a division plate, \mathbf{C}, extends longitudinally across the chamber immediately above the opening, m and fills the chamber nearly to the front plate, B. The cool atmospheric air from the belows, in the first place, strikes with considera ble force upon the hottest portion of the fireplate, \boldsymbol{x}, made of cast.iron, plumbago, or other suitable material, and after being forced upon this plate immediately fills the part of the chamber, f, and taking the direction of the arrows, passes to the lower chamber, g, from whence it is expelled through the opening or fire-pipe, m, upon the coal of the fur nace. The opening, m, is inclined to a horizon. tal line, and the air meets the coal by being driven at an inclination downward, instead of striking it horizontally. The advantages of Mr. Davis's tuyere are, that the air from the bellows becomes heated by absorbing the caloric from lhe fire plate, n, thus a two-fold advantage is gained-first keeping the plate from being over-heated, and conse quently destroyed, and at the same time furnishing a hot blast to be forced upon the coal. Measures are taken to secure a patent.

