

Reported Offcially for the Scientific Americin LIST OF PATENT CLAIMS Yasued from the United Etaten Patent 0
for tirs webr fnding may 3, 1853.

 and the etrings tand handies, either atone or in com-
bination with the epring and vibrating platform, as
desercibed bination w
dessibod
dalso clit

 neath the lower hopperg, in oombination with the
said hopper for discharging manure in hills, as set ${ }_{\substack{\text { said } \\ \text { forth }}}$

 carvilinarar motion
tion, as described.

 finger upon the pulling rod

 set forth

$\left\lvert\, \begin{aligned} & \text { made stronger, with a given quantity of material } \\ & \text { than by any mode of construction hretof ore kno wn }\end{aligned}\right.$

 length to the upper or main rail and hreak joint
with it, as may hereafter be found most desirable. desions.

Faraday on Static Electricity
The following is a short abstract of a lec ture recently delivered by Faraday before the Royal Institution, London, and taken from the "London Expositer:"-
The branch of the subject to which he directed attention in this introductory lecture was the different means by which what is ealled static electricity may be excited, the term "static" being applied to distinguish that condition of electric force which is excited by triction on any insulated medium, from the electricity which is developed in a current state by voltaic action. The profe sor strenuously endeavored, in the first place, to impress on the minds of his auditors the great importance and the extraordinory character
of the torce called into action by merely rub-
of the torce called into action by merely rub-
tuta a glass rod with a piece of silk; that forie being sufficient, when operating on light bodies, to overcome the attraction of the earth. Several experiments were exhibited least possible friction; among which the most curious was the divergence of the gold leaves of an electrometer by the movement
ot Protessor Faraday's feet on the carpet whilst he touched the top of the instrument With a view to prove that the bodies called electrics do not derive the power of exciting electricity from similarity of their constituent gutta percha and collodion, or gun cotton, were adduced, and by the different results of heir combustion, the opposite characters of their elem ents were exhibited. It has been
generally supposed that in the excitement of generally supposed that in the excitement of
electricity by friction, it is'necessary that the cubber should be ot a different material from the electric ; but that this is not an essential condition was illustrated by the following experiment:-Two strips of dried flannel were rubbed against each other transversely the assistant holding one of the strips tightly stretched whilst Frofessor Faraday rubbed the other briskly across it, and on applying the latter to the electrometer, the leaves di verged. Another experiment exhibited in a very striking manner the excitement of elec tricity that takes place whilst combing or brushing the hair when dry. A long lock of hair combed out with a tortoiseshell comb
exhibited strong electrical indications by the hairs diverging separately from each other, and when the electricity was collected by an repetitions metal plate, it served, after a few which gunpowder $\mathbf{w}_{\omega} \mathrm{s}$ fired. The evolution of static electricity by evaporation was illustrated by pouring water into a small heated vessel placed on the electrometer. This mode ot exciting electricity possesses peculiar
interest from its being supposed to be the cause of the electrical phenomena of the atmosphere ; though whether this arises from mere change of state, or, as some philosophers imagine, from chemical action, remains a pro-
blem to be solved. The professor stated, however, as a circumstance tavorable to the devised has the excitement of electricity been rendered manifest by evaporation at the temperatures of the atmosphere. A small boiler whowing the excitement of electricity during
sho lecture table, for the purpose the emission of high pressure steam ; but this means of excitement, though apparently op-
posed to all others previously known, may be
resolved into excitement by friction, caused by the forcible rubbing together of the particles of condensed steam as they issue from the
jet. Professor Faraday did jet. Professor Faraday did not, however, allude to the searching investigations and ingeniously contrived experiments by which he established this interesting fact; a satisfactory evidence of which is, that when the injec tion pipe is heated, to prevent condensation, the excitement of electricity ceases. The last means of electrical excitement noticed was the unequal expansion of some crystrated by experiments with tourmelin, the substance in which this property was first observed.

Strange steamer.

On Friday last, while visiting the steamboat wharf, a curiosity was presented to our view in the shape of a new steamer, designed by the well-known engineer, Mr. David Napier, of London. We were naturally anxious to witness the performance of this new ac-
quatic traveller, and having a few hours to spare at the time, we started with her on a trip to Dumbarton and b3ck. She is about the same length and breadth as the other Dumbarton boats, but in other respects differs widely from any of them, or any of the other boats on the Clyde. Theee is a swell on each side of her, under which the paddles work, but no elevation in the shape of pad-dle-boxes, which are so small in diameter,
that they do not rise much above the level of the deck; her bulwarks running all round on the level; her engine-room is elevated about three or four feet above the deck, and immediately behind it, and about the same height, is a platform tor the pilot, who steers her with a horizontal iron wheel of simple contruction. Close by the pilot there are two long iron handles coming up from the engine room, by which the captain regulates, stops,
or reverses the motion at pleasure and with or reverses the motion at pleasure and with
ease, the engineer having nothing to do with ease, the engineer having nothing to do with We will not attempt any minute description or the engine; suffice it to say thar it stands in a small space-perhaps that of a parlor table, and bears no resemblance to any engine we have ever seen previously. Its outward appearance is a somewhat complicated mass of pipes, with two horizontal cylinders, or steam chests, into each of which a large slide works perpendicularly. The paddle shaft emanates from the ends of the steam chest or cylinder, and has four eccentrics on it, which appeared to do the work of cranks. The paddle wheels have only four floats on each. She made the down run in one hour and forty minutes, and the up in one hour and fifteen minutes-stopping at Renfrew in both cases. The engineer told us that he expected a much higher speed yet-that being her first day; besides he intormed us that he required only ne wagon of coals to perform two trips What will be the result of this scheme we know not, neither are we prepared to give any opinion on the engine. We are favorable to the small number of floats, providing the dianeter of wheel was much larger, and the doats of a better form.
[The above is from the "North British Mail." The distance which she made in one hour and fifteen minutes is at least 23 miles; this is fast running, but not quite as fast as some of our North River boats.

ship-Building on the Clyde.

The "North British Mail" says, there are t present 100 vessels in course of construction on the Clyde, and of these only 6 are timber-built, all the rest being built of iron. It is also notable that these iron vessels consist both of steam and sailing vessels, though the former class preponderates. The tonnage of the ships now in construction on the Clyde amounts to upwards of 60,000 tons. The engines of the steam part of this great fleet have an aggregate of more than 14,000 horse-powr. The probable value of the whole, though necessarily inexact, cannot be much short of $£ 2,000,000$ sterling! Yet, in a few months, his enormous amount of shipping will be off production, equally valuable. The number of workmen employed in building the vessels and making the machinery is about 15,000 .

The number of hands employed in raising the raw materials from the basin of the Clyde within a circuit of 30 or 30 miles, for these and similar great works, is still more immense. Another most gratifying feature of the ship-building trade of the Clyde is, that the employers in nearly all the establishments were workingmen themselves within the last thirty years. Most of them had at tained the period of middle life before they turned their attention to iron boat-building at all. The men are not only the architects of their own fortunes, but the creators of a new branch of industry.

Recent Foreign Inventions.
Mr. John Mitchell, of Calenick, Cornwall, has just specified his patented improvements in purifying tin ores, and separating ores of tin from other minerals. The invention eonsists in a mode of applying common salt for the purpose of puritying tinores, and separating ores of tin from otner minerals. The invention consists in a mode of applying common salt tor the purpose of purif ying tin ores, and separating therefrom the other metals with which they are usually associated. Before proceeding to operate, and in order to ascertain the proper proportion of salt to be used, the patentee takes 8 oz . samples of the tin ore, previously stamped and washed, and submits them in mixture with different proportions of salt, (say lore ozs.) to a temperature of about 163° of Daniell's pyrometer, for about three quarters of an hour, using a reverberatory or other turnace. If, on analyzing the oxides thus produced, either sample is found to be pure, then the quantity of salt used in calcining that sample is a proper proportion to be used. The ores, previously stamped and washed, and salt are mixed together and placed in a reverberatory or other furnace, where they are subjected from three to tour hours to a heat of 163° of Daniell's pyrometer, which should be raised gradually pyrometer, which should be raised graduall
but not exceeded, the object being not to debut not exceeded, the object being not to de-
compose the oxide of tin, but to cause the chlorine of the salt to combine with the other metals presant, so as to render them soluble in water. At the conclusion of the roasting, the ore is thrown into water and washed, after which it is smelted in the usual way.
Claim.-The mode described of applying common salt for puritying tin ores, and separating ores of tin from other minerals.

Sulphate of Ammonia-Wm. Hunt, of Stoke Prior, patentee.-The object of this invention is to obtain the sulphate of ammonia from the ammoniacal liquor of gas works.This is effected by making the said liquor to traverse a condenser filled with pebbles and coke, and there brought in contact with sul phurous acid gas obtained by calcining pyrites of any description to drive off the sulphur therefrom. The sulphurous gas may be introduced at the top of the condenser and descend with the falling liquid, or it may be introduced at the bottom; the gas, however, must be cool before it is brought in contact with the ammoniacal liquor. The result of the union of the gas with the liquor, is to convert itinto a sulphite, by subsequent evaporation and exposure to the air, the sulphate will be prodution of our gas companies.

Patent Cases.
U. S. Circuit Court, New York, Judge Nel n presiding.-Blakes Fire-Proof Paint, Wm Blake, versus J. G. Belknap. This was a suit to recover damags for an alleged infringement of a patent for Blakes Fire-Paint. This case was decided on May the 4th. Verdict for plaintiff six cents, thus sustaining the paent
Piano Forte Legs.-Warren Hale, versus A. E. Brooks. This was an action for an infringement of a patent for making piano forte legs or irregular surfaces. On
May the 5th a verdict was given for plaintiff of $\$ 1,000$.

A submarine telegraph, from the port of Genoa across the Mediterranean, via the Islands of Corsica and Sardinia, will be speedily executed, and the British Government has issued orders for a branch from Cape Bon, on

