

Reported Oficially for the Scientific America
LIST OF PATENT CLAIMS

 pass under or orar the guard, so as to preenent the
dust thrown directly upwards from the track,
as well as that moring horizontally, or or
entering the windows, as deseribed.
PLANIING HAT Bodibs-By Phineas Hmmons, of
Nem Yort City: I claim the combination of a reci-

 of the body and work king it for
subtantial in ithe mot on of
ner of operation, as set forth.
RoLling BAR-IRoN-By. J. A. Hartupee \& Abram
Ale anader, of Pittsburgh, Pa.: We claim the com.
 zontal roliers, with the tho Yertical rollers, in such
a manner that by raising or lowering the upper roll
 at the same time, the peripheries of all the rolilers,
be kept in contact and in their proper relative posibe kept in contact and in their proper relative posi-
tions with each other, and also in suca a maner that by moring the ower horizontal roller end wise
in its bearings, to make a narrower or a broader bar, in its bearings, to make a narrower or a broader bar
the aforesid verticil rollor will bemoved laterall
 kept in contact, and in promp
each other, as set forth.

 for cansing the gat ot traverse onder the entire eur
face of the oven of the cooking range, operating as face of th
set forth.

 the clogging of the cunt
preventent, as deseribed.
 $\underset{\substack{\text { the eutter } \\ \text { get forth. }}}{ }$
 ion of the open or ratticed bottom of the seed hop
per, with the teeth on the axle them into said hopper, for the parpose of draming or
forcing out the seed, so that they may be drilled in. forcing out the
to the ground
ner es forth forth.
Songw BLANIs-By T. Nembury, Taunton, Mase.
1 claim the detached tooi posta arranged as descri-
 carrying the threadiog tool
and construction, as set forth.

 cessity of unwinding it from and re-winding it upo
the cloth rollers, as before practiced.
SBwing MAOHiNEs-By William Wickersham,
Lowell, Mass: I Iay no claim to the combination
 machine, and for the purpose of laying two threade
over a needie, uuring the process of the formation oo

 threads into the hook of the needle, while during
the next pasage of the neade throuh and out of
the colotht the other guide shall lay its thread in the the cloth, the other guide shall lay its thread in th
hoo of the needle, each guide acting, alternately as specified.
And for the

 viz, the griade with the long sol for reeciving the
thread, in its passage to and through the other guide,
as specited.
Also
the abore described peculiar mode of sewing cloth, or other fabric, viz,., by combining two threag
with the fabric, by drawing them through from the
 the threads al
ly as specified
I do not claim a hooked needile, having a contri
I vance, such as either a lever turning on a fulcrum
applied to or a noedlo or wire made to extond and
work through the shank of the hook, as is ussd in

$\left\lvert\, \begin{aligned} & \text { that it may slide in a groore in the needle or carrier, } \\ & \text { parallel to the motion of the needle, in the manne }\end{aligned}\right.$ parallel to
specifed.
Pdripying Rosin OnL-By S. L. Dana, of Lowell,
Mass (assignors to the propritotors of locks and ca Mass. (assignors to the proprietors of lock ans and cas
nals of Massachusetts : Ido not corfine my clain
nat

lime. claim the above described process, or its equiva
I.
Int of
lint

 to, as described, and distilling from the compound
thustormed a deodorized proparation of rosin oil, as
deacribed.

Cambridgeport, Mass. Patented April 18 18k 1848 :
laim a
 edges of a book mat betrim med, by a a single adjust
nent of the same in said holder, bnd by by the more
 each of the aforesaid three positions, whether such
holder be combined with a reciprocating knife or utter, having any other shape or motion.
Also the adjustable frame in combination
triming book holder, or the turning and adjustable oook hoider, for the purpope specieced.
Also, the combination of the table,
Sook holder io supported, arranged o, os os to be grad the
nally raised, to convey the edges of the book trat
 or cutter having any other shape or motion.

Also, in combinatien with a gun having a digseo
ed cerew breech, the flanged dhield through which he cartridge is made to pass into the chamber over ine dissected serem, without danger of being broked

 point of the percu usion cap, for the purpose of in
rig the thation of the gupo
ind

 breech of the gun, without requiring a separate ope-
ration for takigg it out t; in these claims I shall not

CanNon Look-By Bej. Chambers (assignor to
Dato

 the lo
forth.

 Clocic CASE Fonsrs-By Charles Chinnock, of
New Yort Oity (three designs).
 Coosing STove-By S. H. Sailor (asigignor to O.
W. Warviek $\&$ Frederick Leibradt), of Philadel-

The Hoosic Tunnel. ${ }^{\text {P }}$

In relation to the action the Joint Special Committee of the Legislature of Massachu-
setts, in favor of granting the aid of the State to the "Hoosic Tunnel" Railroad Company, the Report arrives at the following conclusions, viz: :-That the tunnel route will make a reduction of twenty-two to seventy miles in distance between Troy and the city of Boston, and all the northern towns of Massa-chusetts-that it will reduce the summit elevation 640 feet, perpendicularly diminish the grade trom 83 to 39 teet to the mile, obliterate seven entire miles ot curves, replace a ferry
that costs $\$ 25,000$ yearly, by a bridge, and that costs $\$ 25,000$ yearly, by a bridge, and
enable a freight engine to take twenty-five long freight cars in place of ten to fourteenthe usual number on the three divisions of the Western-thus reducing the cost of transportation about one half, and enabling Boston to participate in the western business, amounting
to three and a half millions or tons on the Hudson, and increasing at the rate of more than half a million yearly. The committee are satisfied from the evidence that the tunnel will ventilate itself, as the steam and smoke are proved to condense against the roof and give no trouble. As respects the cost, they consider it proved that the tunnel will range from
one to two millions, and attach little weight as to the cost of some English tunnels, as they
when railroad tunneling was not understood,
and being through wet clay, required very and being through
expensive masonry
The committee are satisfied the tunnel may be made in four years, either with or without the machine, which worked to their satisfaction. Considering the tunnel essential to the prosperity of the State, and not seriously injurious to the Western Railroad, which derives nine-tenths of its net in-
come from the local business, and little profit come from the local business, and little profit from the through trade, which has been for passage of the bill.

Caloric--.Perpetual Motion.
Messrs. Editors.-In the Scientific American of January 29, on page 54 , I find in an article upon the caloric engine, the following sentences :-
"Thus this engine is constructed upon the principle of heat force; that is, if a certain amount ot heat can be retained, it will produce repeated effects upon innumerable quantities of water-a thing utterly at variance with mechanical philosophy."
"This was certainly a kind of perpetual motion engine; the same heat and the same air being used over and over agan."
Now I think that here is a theoretic error Heat can theoretically be used over and over again, and it only remains to reduce this prin ciple to practice to realize the fact that hea is unlike gravitation. To illustrate my meaning, let us take the case of a common steam engine. No heat is lost by the condensation And if the apparatus were not too cumber some-that is, if we could prevent all loss by radiation-we should be able to use the 20 pints of water heated from 50° to 110° in condensing an amount of steam equal to one pint of water, by heating air to produce a force 4 times as great as that produced by the steam. The only way to avoid the conclusion that heat can be used more than once seems to me to be to deny that the water a 110°, from the hot-well of a common steam engine would tend to expand air at 50°, There is a fundamental differenee between the force of caloric and that of gravitation, that the latter leaves a power exhausted, while in the case of the former an additional force can be obtained by the natural radiation of the heat, after the caloric has once bee used to obtain power by expansion, very nearly the same power being capable of be
ing obtained for the contraction. P. M H. [If there is a theoretic error in the princ ple we annunciated, our correspondent has tailed to point it out. When he talks about an additional force being obtained from the radiation of heat he must mean that it is force diff erent from heat itself, or that it is a portion ot the amount ot heat generated. We
can form no idea of the effects of heat apart from bodies possessing gravity. We measur the quantity ot heat generated by the temperature of bodies possessing gravity. Our correspondent (and many others) have confused ideas about using heat over and over again For example let us take a cubic foot of ai and heat it to 491°, and it will exert a pressure, of 15 lbs . on the square inch. Cut of the fire influence and the cubic foot of air will expand to two cubic feet, at the atmospheric temperature and exert a pressure of 0 . (A_{ir} heated to 491° doubles its volume). Now can this expanded 491° of heat be used over again How another cubic toot of air to 491? N How then can it produce repeated effects up on innumerable quantities of matter? You
can compress the two cubic feet of air expanded to atmospheric temperature into one foo and it will then be brought back to 491°, and exertthe pressure of 15 lbs . on the square inch but then you must just exert as much force to compress it as the force to be obtained after it is compressed. The idea which has been propagated, that heat can act above and beyond the laws of gravity upon bodies possessing gravity is preposterous. We thought we had said enough to show how ridiculous the assumption is, that a certain amount of heat can produce repeated effects upon innumerable quantities of matter, but we see that we must strike a harder blow still
It is stated that "the hot air engine uses

300 , which is allowed to escape every stroke. This is done, it is stated, by interposing packages of wire gauze between the feed and working cylinders, which takes up the heat from the escaping hot air, and gives it out to the inlet cold air, thus the same quantity of heat produces repeated mechanical effects exept the loss of 30° every stroke."
We have fairly quoted the allegements of the advocates of using heat over and over again, and will show by plain figures that it is all moonshine and a deception. Air doubles its volume by the application of 4910 . - The advocates of hot air say 480°, and we will grant them the point. Well, the working cyinder of the Ericsson engine has a six foot stroke. Allowing the air to be heated to 480°, it will move the piston 6 feet with a
pressure of 15 lbs . on the square inch. If al lowed to expand to double its volume, its pressure will be reduced to 0 . The whole of this stroke would be 12 feet, and the average pressure $7 \frac{1}{2}$ lbs. on the square inch, for the expenditure of the fuel that heated the contents of the 6 feet deep cylinder, that is the 480° of heat generated by a certain quantity of coal, would move the piston 12 feet with an average pressure of $7 \frac{1}{2}$ lbs. on the square ch. It could not do any more, for the heat Butd be reduced to that of the atmosphere. But according to those who advocate the ho airregenerator, the 480° will make the piston move 52 feet, with a pressure of 15 lbs . on the square inch, by allowing it to come dashing against a resisting medium of wire gauze at every stroke, and then making another quantity of cold air dash against the gauze upon the principle, we suppose, of hyperbolic reasoning. This is the way they do it. The first stroke, 6 feet (72 inches) is performed by the air heated to 480°, this air comes rushing out against the wire gauzeand gives outall its heat except 30°. Cold air is then poured through he wire gauze, which gives out all its heat to expand all the air which goes under the piston, and raises it up a second time, the whole six feet, excepting the amount of heat, $\left(30^{\circ},\right)$ lost, which must be deducted. Now let us cut off the heat from the fire, at the end of the first stroke, and see what amount of work will be done by these wild hot air the orists. 480° is the amount of heat applied to the air ; the loss of each stroke is $30^{\circ}, 72 \mathrm{in}$ being the length of the stroke. Well (4800$\left.30^{\circ}=16\right)\left(72 \div 16=4 \frac{1}{2}\right) \quad$ The loss of distance each stroke for 30° of heat is 4d inches. Well, first stroke 72 inches; second stroke 72 $-4 \frac{1}{2}=67 \frac{1}{2}$. Third stroke $67 \frac{1}{2}-4 \frac{1}{2}-63$ inches and so on for fifteen strokes, when the loss of 30° each stroke will have reduced all the heat to 0 , and it will be found that instead of the engine (as it only can do by pure scientific deduction) moving 12 feet with $7 \frac{1}{2}$ pounds pressure, it will have moved 52 feet, with a pressure of 15 lbs . on the square inch, or nine times the actual power which upon any consideration can be derived from 480° of heat We can tolerate no more nonsense about using heat over and over again to produce repeated mechanical effects upon innumerable quantities of matter ; more especially with those who can see by some hocus pocus, that if no loss is caused by radiation and exhaustion ne made to propel a steamship from Sandy Hook to the Cove of Cork.
Dr. Swaim, of Philadelphia, says, in relation to the "Curious Properties of the Number Nine," if any row of two or more figure be reversed and subtracted from itself, th figures composing the remainder, will, when added horizontally, be a multiple of nine :-

42	846	3261
24	648	$\frac{1623}{\overline{18}=9 \times 2 .}$
$\overline{4} 98=9 \times 2$.	$\overline{1638}=9 \times 2$	

Government Eale of Muskets, sce.
On the 19th inst. a sale of about 5,000 flint muskets and other military equipments, took place at the Marine Barracks at Washington.
The boiler of the dredging machine used in he Brooklyn Navy Yard exploded last week, blowing the latter to pieces, and two men, the ngineer and fireman lost their lives.
Bunker Hill Monument was twice struck y lightning a few days since.

