Machinery and Toola as the are.mRolling

Presses.

The pressure that can be otained by pass ing an object between retaryrollers is probably more intense than that cquired by any other means, and the abov-mentioned description of machinery has eeen used for a considerable period in the manufacture at sheets of malleable iron, stel, and capper when in the red-hot state, bu most others of the matals and alloys are roled whilst cold. nearly supersedes the use of the fammer, as it performs its function in a nore unitorm and gradual manner, and at the eme time increases to the utmost the hardness, tenacity, elas ticity, and ductility of such o the metals and allovs as are submitted to this and similar courses of preparation for the arts generally.
It is in the manufacture of malleable iron, preparatory to its being consigned to the hands of the smith, that the sarviceable character of the rolling press is most conspicuously displayed. By the uiual system the ously displayed. By the unual system the
use of the rolls is subsequentto the prior process of "shingling" or worsing the balls of cess of 'shingling" or worsing the balls of
metal under a massive forge kammer, although metal under a massive forge bammer, although
it has been proposed to dispense entirely with the hammer substituting for it roushened rolls. A still later expedient tor this purpose is the employment of three inverted cones, having such a relative position to each other that a space like a hopper is left between them. A mass of iron being thrown into this receptacle 18 gradually drawn down by the revolving cones, and well compressed during its transition, the fibres being also twisted in the same manner as yarns in strand of rope. The rollers intended for iron works are turned in a variety of forms accord ing to the section of the metal that is to be
produced. One pair will have a series of an gular groves tor square bars, while others cor respond to the shape of angle and railway iron. Others again are composed of a series
of steel discs, placed upon a spindle to slit of steel discs, placed upon a spindle to slit
thin plates into a number of small rods for the thin plates into a number of small rods for the manufacture of nails. The cylindrical rollers used in paper.making machinery for pressing the single sheet of paper as it is produced by the machine require that the two surfaces order that the rollers may act uniformly upon the paper, and the surfaces at the same time are required to be very smooth, that they may are required to be very smooth, that they may
may impart a finished surface to the paper. may impart a finished surface to the paper.
These rollers are sometimes six feet long and These rollers are sometimes six feet long and
of eighteen inches diameter, and they are of eighteen inches diameter, and they are
finished by an exceedingly tedious operation, finished by an exceedingly tedious operation,
being made to abrade each other without any being made to abrade each other without any
sand or emery being employed. The engraver $h . s$ long been aware of the exceeding power exerted by this form of press, and find ing bimself compelled to procuce the most in t mate contact between the paper and the metal plate on which his skill has been expended, he finds the common printing press inadequate to transfer the fine lines of the original. But by placing the plate and paper upon a bed, and passing them through the rolling press the faintest lines are reproduced.
One of the most elegant applications of mechanical science to the fine arts is due to Ame rican genius. We allude to Mr. Perkin's ad mirable process of transfer engraving, which may be thus explained A soft steel plate is first engraved with the required subject in the most finished style of art, either by hand or mechanically, or the two combined, and the plate is then hardened. A decarbonized steel cylinder is next rolled over the hardened plate by powerful machinery until the engraved impression appears in relief, the hollow lines of the original hecoming ridges upon the cylinder. The oller is re-convertel to the condition of ordinary steel and hardened, after which it serves for returning the impression to any number of decarbonized plates, each of which becomes absolutely a counterpart of the original, and each plate, when hardened, will yield the enormous number of 150,000 impressions without any perceptible difference between the first and last. In the event of any accident occurring to the transfer roller, the original plate still exists, from which another or any required number of rollers can be made; and from the rollers any number of new plates, each capable ot produ-
cing as many mpressions as above cited. This invention is most valuable, as it allows an unlimited number of proors to be obtained from a plate executed at a great expense, and bank-
ers andacturers have not been slow in availing themselves of the protection that it aflords against counterfeiting. It will perhaps, in this place, be scarcely deemed a digression to dwell for a moment upon the best mode of annealing and hardening the steel rollers and plates. Several of these are placed in a cast-iron box and surrounded on all sides by fine charcoal mixed with an equal quantity of chalk, which is driven in firmly, the box is then placed in a furnace and expo sed equally to the heat. The cooling extends over a space of 48 hours at least, the surface of the rollers and plates is then removed, and of the rollers and plates is then removed, and
the device is raised in the transfer press. The the device is raised in the transfer press. The
plates are generally used in the soft state, but, plates are generally used in the softstate, but,
as well as the rollers, are often hardemed by as well as the rollers, are often harderred bv
being placed in a wrought-iron boz with a loose cover and false bottom; the steel is surrounded by carbon from leather driven in hard, the cover and under side being luted with moist clay. The box is heated quickly and then placed over a large tub of water, after which the bottom slide is quickly removed, and the steel rollers immersed in this manner. With precaution the most delicate lines escape injury. The apparatus empleyed for curving plates is also well worthy of attention, it has two cylindrical rollers which travel in opposite directions, withe third roller just opposite these two, and which is capaer just opposite these two, and which is capa
ble ot vertical adjustment When, therefore, the metal is carried along by the former two rollers, it strikes against the core of the bending roller, and is curled up to enable it to pass, so that it assumes a circular sweep, whose ra-
dius is dependent on the position of the roller dius is dependent on the position of the roller and when this is placed out of level, the work is then thrown into a conical form. How ever this press may be constructed, the sam principle prevails in all, namely, the applica
tion of three forces. The manufactur likewise, of the rolling press, and here it must likewise, of the rolling press, and here it must
be observed that the great feature of modern times, in the manuracture of tubes, is the be times, in the manulacture of tubes, is the be-
ing able to dispense with all intemal support, and to complete the tube by external pressure and to complete the tube by external pressure
alone, which is preferably given by grooved alone, w
rollers.

Daguenreotyping.
Niepce, the original discoverer of the art in conjunction with Daguerre, used exclusive y the bitumen of Judea; this substance is changed by light, only with much slowness,
yet irrespectively of the pictures taken in the camera, he succeeded in copying engraving by the sole action of the light, and in making others, trom which a limited number of im pressions could be taken. He operated at firs on tin plates, for which he afterwards substi tuted thin sheets plated with silver; it was while endeavoring to strengthen the shades iodine. By this on the plate thered the pho togenic properties of the coating of iedide o silver, which are manifested by a deep change of color, an unexpected result for the iodide of silver precipitated, is perhaps the insoluble compo
To Take out Staing from the HandsA correspondent gives the following direc tions for taking out stains on the hands of Da-guerreotypists:-Blue spots are produced by the union on the skisium. In this manne unintentionally, Prussian blue is tormed; now Prussian blue is soluble in caustic alkalies, it can therefore be made to disappear by rub bing the dyed part with a weak solution of
potash or caustic soda; ammonialikewisegets rid of it. Yellow spots are attributable to the formation of a sub-salt, or an oxide of iron. When recent they disappear more easi ly than when they have been allowed to remain for some time; in the first case oxalic acid is useful, or the salt of sorrel; in the second hydrochloric acid, diluted wit two or three times its volume of water.
Black marks may be of two kinds: if they are owing to the union of a salt of iron with gallic acid, which forms common ink; they
acid prepared as above. If they are owing the action of a salt of silver con the gallic aid, moistening them with hydrochloric acld, they can be classiigied in the list or ordi-
nary stains ot salts of silver. These latter alnary stains of salts of silver. These latter al-
ways dye the skin black; in time this color ways dye the skin black; in time this color
changes to a wiolet, afterwards to a dark changes to a violet, afterwards to a dark
brown, to a light brown-and at last disapbrown, to a light brown-and at last disap-
pears. To ges rid of these stains the employment of an alcoholic solution of iodin has been advised. This method otten effica cious, has the fealt of dyeing the skin a ye low fawn cotor, the more disagreeable becaus it continees for several days. The infallible remedy is the cyanide of potassium. By spreading it in a powder over the part to be taken out, and then gently moistening it with water and rubbing it over the same, it will always clear off the stain Cyenide of potas sium is a strong poison, it is therefore prope to prevent any harm thet might result from its introduction ander the nails or in a scratch to wash the hands aiterwards with a littl chlorine, or, preferably, Javelle water. The
following is a resume of the directions to be following ts a
1s:. Using hydrochloric acid, which de stroys the yellow color, owing to the salts iron, and which restores all the salts of silver to the state of chlorides.
2nd. Soda or any other caustic alkali which takes off the blue color attributable to Prus sian blue, and neutralizes the little acid remaining on the skin atter the former operation.
3rd. Cyanide of potassium, which takes way all the stains due to the salts of silver 4th. Lastly, for sanitary nrecaution, chløri ded or Javelle water- - LLumiere.

Atmospheric Hammer.

A mechanic in Rochester hes invented an atmospheric hammer, intended to displace the trip and tilt hammers. The principle applied to move the implement is not unlike that of the caloric engine. The "Rochester Adver tiser" explains the operation as follows:The hammer in question derives its force The hammer in question derives its force
from an exhausted cylinder-the vacuum being made by the turning of a crank by which the piston is raised and all the air torced out, the piston is raised and all the air forced out,
when the connection is broken and the piston falls with the greatest velocity and force.The entire weight of the hammer, cylinder, piston, and all the model in question, is but little over four pounds; yet it is competent to give a blow equal to seventy pounds. By means of a valve and key at the bottom of the cylinder, just so much air may be let in as may be desired, so that a light blow or a heavy one is produced at will, An eight inch cylinder will prodece a force equal to the falling of 500 pounds upon the anvil, and the repetition of the blows will be in proportion to the velocity with which the crank is turn-ed.--Exchange.
[The man who wrote the above certainly knows little about atmospheric pressure or the caloric engine. It is said that the action is like the action of the caloric engine, and that it is operated by a vacuum. Now there is no yarenam chamber or cylinder about the caloric engine, and there is never a vacuum in it. The piston mentioned above never can fall with the greatest velocity and force. Its pressure never can be more than 15 lbs . on the square inch, and its velocity is measured by he well known law of falling bodies. The vacuum is tormed, it state, by turning a crank; very well, some person or machine must turn this crank. To do so a steam en gine is the best power, therefore, the steam ammer is better than the atmospheric one A hammer, however, can be operated by a water wheel compressing or exhausting air mode by which the above hammer is intend ed to be operated.

Spots on the dan and Magneac Vard

We find the following statement in the "National Intelligencer," from its London orrespondent:-
Mr. Faraday, in a late lecture before the Royal Institution upon the Magnetic Forces made the following important announcement A Germanastronomer han yea recording the result. From year to year the
groups of spots vary. They are sometimes very numerous-sometimes they are tew.After awhile it became evident that the varition in number followed a descending scale through five years, and then on an ascending scale through five subsequent years-so that the periodicity of the variations became a vis ible fact.
While our German ffiend was husy with his group of san-mpots, an Englishman was busy with the variations of the magnetic needle. He , too, was a patient recorder of patient obseisuation. On comparing his tabuar results with those of the German astronomer, he found that the variations of the magnetic needle corresponded with the variations of the sun-spots-that the years when the groups wereat their maximum, the variation of the needle were at their maximum, and 0 on through theirseries. This relation and s n through theirseries. This relation may be o-incident merely, or derivative; if the lat ter, then do we connect estral and terrestrial
magnetism, and new researches of science are magnetism,

Agassiz and Humboldt

Dr. Gibbes, of Charleston, at a dinner of the Medical Society, recently given, concluded a speech with this anecdote :-
When Agassiz first came to this country, he was under the direction of Baron Humboldt, o whom he was largely indebted for aid in his pursuits, and though desirous of remaining here, he felt bound to return to Europe.-
Ha ving received the offer of the Lawrence Professorship at Cambridge, he declined it on this account; but, in writing to his patron. he mentioned this fact, and at the same time ex pressed a desire to remain longer in the United States. The reply of the noble man was:-
"Sir, you belong to no country-you belong to Science; that is your country. You are released from any obligation to us; if you find the field of science furnishes you a better opportunity for your labors in the United States, you must remain there."

Prof. Baird, of the Smithsonian Institute, esommends the domestication of this animal, as they combine the qualities of the horse and x. He says, "harnessed to a sled, a pair of them in Canada are reported to have travelled two hundred miles in one day," which may be regarded as a long story. A Swedish writer recommends their employment in time ot war, for the cavalry and light artillery, from which he predicts great advantages would be derived in battle. At one time their domestication was forbidden in Sweden on account of their having been employed, from their extraordinary speed, to effect the escape of criminals. Recently, a law was
passed to prevent their destruction for ten passed to prevent their destruction for ten years.

Caloric Steamship.
The "Scientific American" comments with much good sense and consistency upon the usthinking enthusiasm with which certain papers give an account of the experiments made at the present time, in one of the New York docks, with a hot air engine, which has been placed in a splendid vessel. Not that Messrs. Munn \& Co. have any ill-will towards Mr. Ericsson's invention; quite the reverse, but they are right in displas ing caution, and in advising a similar course to their less competent co-editors in such matters. If,
as it is to be hoped the Caloric Stoamship as it is to be hoped the Caloric Stoamship
succeeds in the experiments that are being succeeds in the experiments that are being made, the new motor will make its own character 1or itself without the assistance of
others. Of all things, keep us from imprudent friends."
[The above extract is translated from the "Invention," an excellent and ably conducted monthly periodical, published at Paris by \mathbf{M}. Gardissal, and devoted to industrial, mechanical, and scientific objects in general. The same journal likewise notices our remarks on
the injustice of the law, by which the foreign inventor is mulcted in the sum of $\$ 100$, when his claim has been refused,-as well as on the necessity of lowering the fees to English subjects,
tive.

