Stientifir American.

Scientific American

B. Da won Montreal, r. E.
M. Boallenet, Mobile, Ala.
E. W. Wuley, Ne円 Orieras, La
E. M. Fuler Halifax, N. S.
M. M. Gardissal \& Co., Paris.
M. M. GardissR2 \& Co., Paris.
Responsible Agents may also be found in all th
principal cities and tomang in the United States.
Terms- ta a

We have had many enquiries lately re pecting the mastic cement for covering th fronts of houses and giving them the apnear ance of brown freestone. We have endeavored to find out its composition, and have at last, we believe, obtained reliable information respecting it. Red lead, oil, sand, and lime stone dust, in some form, over every com pound of it. 50 parts by measure, of clean dry sand; 50 or limestone (not burned) re duced to grains like sand, or marble dust, and 10 parts of red lead, mixed with as much boiled linseed oil as will make it slightly moist, compose a mastic cement. The building of brick to receive it should be covered with three coats of boiled oil laid on with brush, and all suffered to dry, before the mas tic is put on. It is laid on with a trowe like plaster, but it is not so moist. It becomes as hard as stone ist tha course of a few months. Care must be exercized not to use too much oil-although no evil will be the result-excepting that the cement will require longer exposure to harden. The oil prevents rain and moisture penetrating, and this is the reason why this mastic is not affected with the weather. Various compositions will answer about as well as the receipt above. We will present a few.
100 parts (by measure) of clear dry sand ; 100 parts of powdered limestone, and 5 of red lead, make a hard mastic; this may be varied with the addition of 10 parts of red lead. 100 parts of sand, 50 parts of whiting, and 10 of red lead make a moderately hard cement. 100 parts of sand, 25 parts of the plaster of Paris (or the same of marble dust) 10 parts of red lead, and 5 parts of yellow ochre, make a very beautiful and hard cement. As stated before, ali of these compositions must be moistened with boiled linseed oil. The quantity of oil is 30 very small in proportion to the other materials, that the whole mass is very porous. The oil unites the particles togeiher, it is the afinitive agent. The sand, \&c., must be perfectly dry before they are mixed together; that is, they must be subjected to heat in an oven to drive off all the water contained in them. The sand should not be ton coarse and should be passed through a fine sieve, Variious coloring substances may be employed to mix with the above composition, such as any of the pigments used in oil painting. We would never use less than 10 parts of red lead in the cement.
The above compositions might be moulded into statues and works of art, by oiling the patterns inside, before putting in the composition and allowing the mastic to harden in the moulds before it is removed. Two ounces of rosin pounded very fine should be added for every pint of oil used. The whole must be mixed with great care to make the cement properly.

Steam engines for agricultural purposes have increased ten-fold in the last three years in England.

CIRCULAR SAW WITHOUT AN ARBOR, AND IMPREVE

The annexed engraving, fig. 1 , is an isometri ing run vertical, and its teeth made to form al perspective view of a new mode of running part of the gearing.
a circular saw withoutan arbor, invented by T. Figure 2 is a perspective view of an imJ. Flanders, of Concord, N. H., who has ta- provement in running circular saws, by the ken measures to secure a patent. The princi- same inventor, Mr. Flanders, who has taken pal feature in this plan, is that of the saw be- measures to secure a patent for it also.

Figure 2

A, fig. 1 , is a stout frame; B is the driving cured on a vertical spindle; G is a circular pulley, and C is the band passing over pulley, D , saw without an arbor; it will be seen that gearsinto the horizontal ones, F, which whe se.
as rotate the saw ; H H H H are small fric ion rollers situated in the frame, and made to ress against the saw near its upper and uner edges, so as to sustain it in its vertical po sition, and yet produce but a small amount of triction. These rollers are adjustable and can be screwed up to the desired pressure. The rest of the parts are in common use, such as the log carriage, N , moved by rack and pinions, $\mathrm{L} K$, and made to reverse by the auxiliary beit, l , in the usual way. This circular saw without an arbor saws out boalds from a log in the same line of cut as a reciprocating saw The object of running a circu'ar saw without an arbor is to enable persons to use smalle saws, large ones being very expensive. Che log passes through (as in the common ills) within the space of the upper andiow er friction rollers, H H
A, fis 2 , is a stout frame; B ismerely ya har dle on the driving shaft of pulley, C, over which the driving band, D, passes, running over the one side of the pulley on the upper saw (I) spindle or arbor, and then around the pulley F , on the arbor, G , of the nether saw, H . The two eaws, I and H , are constructed and arranged to saw logs, the upper one sawing through one half and the lower one through the other half. There is a peculiarity in the teeth of the saw. They are made one-half thinner than the plate, and thus mike a fine cut, requiring less poicer to drive, and at the same time saing some timber; the teeth are set so to mabe the bord clear the plate and ar to may be set and a gouge tooth may be set on the saw, as a clearer. These teeth may be made of fine steel and inserted in the saw plate, which may he of a cught iron. As the teeth of the saws wear down by sharpening, an excellent arrangement is presented for keeping them always in the same relative position to one another, by lowering the arbor of the upper saw, and yet having its belt always taut. The bearings, J J , which support the spindle of saw, I, are suspended and supported by screw the bearings ot saw, screws therefore the teeth wear down, and thus they are made to cut in the D , laws the the owing to always kept ght, owng of arrangement, although the pulley, E , may be placed at any height in the frame; this is evident because it must pass over the same amount of pulley surface and through the same space. The pins in pulley, E, take into the holes in the belt, D , and by this means the spindle of saw, l, is revolved. These descriptions, we suppose, will render the machines and their operations, plain to all, as they are exceedingly simple.
For particulars address Flanders \& Mansfield, Coneord. N. H

Gold Pens
This elegant branch of manufacture is yearly progressing in importance as a source of industry, and nowhere is it more fully exemplified than in our own country. We are led to make the above remark from some specimen gold pens that have been presented to our notice by C. Piquette who received the first premium at the Michigan and Obio State Fairs, and which, for variety and good workmanship are a fair sample of American skill.

Alligator sking.

The "Houston Telegraph," (Texas.) says, that J. W. Benedict, of Galveston, has manu. factured some of the most beautitul boots and shoes that we have over seen, with leather made of alligator skins. The skins are tanned and prepared, so that they resemble the finest calfskin in pliability, and are beautifully mottled, like tortoise shell. He intends to send a pair of boots to the World's Fair in New York. He certainly mesits a premium tor changing the skins of these buge, ugly, monsters to furms of beauty and usefulness.

