

Frictional Gearing.

Messrs. Editors:-You ask for information concerning frictional gearing. Perhaps what little I can say may contain something new. I am now using a machine that has a pair of friction gears to operate it, viz., a wheel 36 inches in diameter, driven by a pinion only $3 \frac{1}{2}$ inches in diameter. The pinion shaft revolves fifty times per minute; it requires and is driven with a 3 -inch rubber belt. Though revolving so slowly and being so unequal in size, the gears carry perfectly. The pinion has its face formed like an A; the large wheel has a corresponding $\mathrm{V}, \underset{4}{5}$ inch deep. This, I should say, is the frictional gearing proper, and is calculated to carry much more in proportion to the surfaces impinging than the flat peripheries, which are not frictional but tractional gears, seeing that the surfaces roll while operating. On the other hand there is constant friction on the A and V surfaces; but, in my opinion, not more than there is in toothed gearing-probably not so much, unless the teeth are of the most approved form and finish. If the wheels are merely in motion, without being at work, it would appear and it really does take more power to revolve them in that condition than toothed gears, because the pressure of the surfaces is constant; while in the commongear, under the same circumstances, there is often considerable of noise and frivolity [?], designated "backiash" \&c. Undouht edly the amount of fristional surface may be so dis proportionate to the power to be transmitted as to require an injurious degree of pressure on the gears to make them do their work; henco, flerbaps, the notion of their great absorption of power, particu larly when running without work.
W. Clebison.

Middletown, N. Y., May 11, 1863.

['This is the kind of information that we desire, and we hope that our mechanice throughout the country will favor us with their experience on the subject. $\Lambda \mathbf{s}$ we have often remarked in the Scientific american, it is high time that the noisy, jarring, un-equally-balanced toothed wheels were driven from the workshop to the scrap heap, and their places supplied by the silent and efficient friction wheels. Who will institute a series of experiments between the apparent and actual results of the economical working of friction gears against toothed gears? We will publish the results of the experiments with pleas ure.-Eds.

Messrs. Editors :-Seeing communications from different persons about frictional gearing, I have thought that my experience might be interesting. I have used iron and iron friction gears together, iron and wood (endwise), wood and wood, leather and iron, and also the grooved friction gearing. I find iron and iron work very well in slow motion, where the shafts are kept in line. Wood and wood work very well, but they are not durable. Iron working on wood endwise worka well, but if there is any spring to the shafts holding the gears, they are apt to wear uneven in course of time, by wearing deeper at the joint. But I find that cast-iron wheels with leather on the pinion, work the best; they are less liable to slip, wear true and are cheapest in the end. In making the leather pinions I pack the leather up edgewise, screwing it tight between a couple of flanges while wet and soft, turning off when dry and hard. [A most excellent plan.-Eds.] For large pinions 1 use segments or strips cut oft straight and bent edgewise, then clamped the same as amall ones, having a projection on the flange to prevent the wheel crowding the leather toward the center and body. The same face and diameter are cqual to a belt of same width and diameter of pulley. As to the grooved gearing of the English pattern, the point or outer end has to travel over more space than the part nearer the center, consequently there is a slip at the point and root of each, and where there is slip there is also wear-a useless consumption of power. My experience with them is small, however, compared with the others described. I have seen a good et of grooved gears (of cast iror) wear out in three
or four weeks, when leather and iron, in the same place, will last three years on the same work. I tind there is nothing equal to friction gearing where there is a constant throwing in and out of gear, such a hoisting or running back, and feed in mills, \&c.

May 9, 1863.
[Our readers will greathat all the testimony we have published is cc.čusive on the main point, that is, the friction wheels are reliable and work satisfac torily in general. In view of such facts it is extraor dinary that so many toothed gears should be manu factured.-Eds.

Constituents of Corn in Fermentation.
Messrs. Editors:-On pages 134, 150, 166, 197 and 214, current volume of the Scientific American, un der the head of "The Distillery Business," I find a communication containing many valuable hints to distillers on the subject, still there are a few points which I think want some explanation. Having had a good opportunity to examine a great many establishments in the United States from west to east, on account of $m y$ patent, and being somewhat acipuainted with the husiness, I embrace this opportunity to make a few remarks on the subject. The last five years have developed the science of this branch to a considerablo extent. On page 134, I find it stated that woody fiber, paper, raw cotton, flax, cotton and linen rags, and sawcust, all contain starch. Now this statement might lead some to a wrong view on the subject ; those articles contain mostly fibrine or cellulous matter, and will never produce sugar and alcohol by the action of diastase or malt; still when treated with sulphuric or muriatic acid, those substances can be converted into sugar or alcohol. The average quantity of starch in corn (zea mais), I think is somewhat overrated. Gorbam gives 77 per cent., Vauquelin 75 per cent. of dry corn, Bizio gives 80.9 parts in 102 of corn in his analysis; but no statement of water. Now corn from the field contains 26 per cent. of water, air dried corn gene rally used in a distillery contains 13 per cent. According to Liebig corn contains 4.25 to 4.66 per cent. of oil by Dumas and others a per ceut. The oil can be plaialy observed by putting a grain lengthways, taking out the lower center part and pressing it be tween the nails of the two thumbs. I thiuk that from 38 to 40 per cent. of starch in one bushel of (5u pounds) corn, might produce from 19 to 20 quart of proof spirits. This quantity only, I obtained by reating corn and cobs together with sulphuric acid Late experiments have shown that by the influence of malt or diastase only $\frac{1}{3}$ of starch is transformed into sugar and $\hat{3}$ of it into dextrine; but through the action of yeast and gluten during the fermenting process, another part of dextrine is tranformed into sugar and from this into alcohol. By the application of malt alone as the brewers use the same for making beer, tbe process of saccharification is cbecked when $\frac{d}{s}$ sugar is formed. The wort before fermentation contains $\frac{1}{5}$ sugar and $\frac{3}{3}$ dextrine in solution. When it has fermented the proceeds of $\frac{1}{3}$ of sugar (partly transformed into alcohol) and $\frac{7}{5}$ of dextrine constitute the beer. T. A. Hoffmann, Chemist. Beardstown, Ill., April 28, 1863.

Welding steel.

Messrs. Editors :-I have noticed that when cast steel is welded, it invariably shows a different ap. pearance at the weld, it being more like iron than steel. The question to me arises, can steel be welded? It is reasonable to suppose that if it has a different appearance at the weld, it must be either improved by the process or injured-most likely the latter. It seems probable to me that in welding the surfaces are decarbonized or reduced to iron, and are not united as pure solid steel, but with a film of iron between. I have had some experience in working cast steel, having fitted up nearly all the boring tools used at the Fort Pitt Cannon Foundry for the last two years and a half. I also notice that where there is a weld in a tool it does not harden as well at that point as the rest of the steel, and when the heavy "bottom tools" have to be dressed over, they frequently part at the weld, thus showing that they are not as strong at that point as solid steel.
I would suggest as a reason for the "s series of loud reports iuside of a boiler" (observed by your correspondent in Philadelphia, Mf. E. Brown), that
portion of the steam is condensed by contact with the cold water from the pump, forming a sudden vacuum, the result of which would naturally be a report like that described. C. W. Crawford
Fort Pitt Worke, Pittsburgh, Pa., May 11, 1863.

Explosion of a Powder Magazine.

A tremendous explosion took place in this city on Monday, the 12 th inst., at half pasteleven P.M., causing the destruction of the cartridge factory at the foot of Seventy-ninth street, Etst Liver. There were (says a daily paper) 140 barrols of blasting powder and 20 barrels of gunpowder stored on the premises, all of which was ignited and destroyed. There were at one time over one million of ball-cartridges in the building, but fortunately the proprietors had shipped them off before the accident occurred. The shock of the explosion was felt for miles around. . In New Haven, 78 miles from the scene of the disaster, the people imagined all sorts of things, among others that an earthquake was in progress, tbat distant cannonading was going on, \&c. In Astoria and Ravenswood--small villages adjacent to the site of the magazine-the excitement was very great and the damage done to glass and joiner-work ulso considerable. The penal institutions on Blackwell's Island, directly opposite the magazine, suffered very much, us did also other tenements in the immediate vicinity. The whole amount of damage is represented as reach$\$ 100,000$, and the occurrence will long be remembered by reason of its tremendous effects. No lives were lost-a remarkable feature when we consider the quantities of bullets that were hurled far and wide.

The "Golden City."

The large new ste.mship of the Pacific Mail Company, the Golien City, is now receiving ber machinery at the Novelty Iron Works. The cylinder and its attachments, the steam-chest, side pipes, cut-of, \&c., are all in place, as also the circulating and air pumps, and the main shafts. The circulating pump is one of Andrews' pattern, of the same kind that was in use on the Montor when she was lost, and which did such good service ou that occasion. It is driven by two independent vertical engines, standiug on a bedplate between the air pump and the main shafts, and is connected by suitable pipes with the condenser, which is of the surface varietp-Sewall's patent. Mr. Lyman Hall is erecting the engine, and from the vigur with which be is prosecuting the work, his part of the ship (the machinery) will he ready for sea before many weeks. Mr. Hall is familiar with all branches of his business, and erected the engine of the Constitution, which performed so well while in the Government service as a transport. The engine of the Golden City has a cylinder of 105 inches in diameter, by 12 feet stroke; the Sacramente, consort, has an engine whose cylinder is 5 inches less in diameter by the same stroke.

Scientific Books.-There is a growing interest among our mechanics for scientitic publications, which we are much pleased to notice, and we recommend all who wish to purchase works of this class to send to Henry Carcy Baird, of Philadelphia, Pa., for one of his catalogues. Mr. Baird is a reliable publisher and his catalogue embraces some of the best books extaut.
Foueign Iron clads.-The cost of the British Ironclad ships has been enormous. The Black Prince cost £373,899; Resistance, £257,848; the Defence, £259, 898 . The whole cost of the Warrior, before being made ready ior sea, was $£ 377,373$. Contrast these figures with those of the Monitors, about $\$ 350,000$, and the comparative efficiency of the two classes of shipsthe English vessels with their towering bulk, and our own with tbeir submerged hulls, and we need not indulge in much conjecture as to which of the two w.ould come out the victor in a contest.

Tine largest railway carriage factory in the world is said to beat Perlin, Prussia; it employs 1,500 men and turns out carriages to the value of nearly $\$ 1,500,000$ per annum.

Tur receipts of grainat Buffalo, N. Y., on the 11 th and 12th inst., amounted to $2,180,000$ bushels-the greatest quantity ever receiped ik the same space of time at that point.

Improved Ditching Machine

The invention herewith illustrated is intended for a subsoiling and ditching machine, and congists of the steel teeth, A, secured in the frame, B ; these teeth have square shoulders below the frame, and are fastened in their places by keys or their equivaleut, on top of it. They are so disposed in the frame as to make a wide thoroughly-drilled track or furrow, equal in width to the lateral distance between the teeth on the opposite sides of the frame, and not a number of narrow single drills or furrows. Tbe team, either single or double, as circumstances require, is attached to the draught cbain, C ; when a side draught is desirable the chain is detached from the central hook and connected with the clevis, D, and the direction of the apparatus is controlled by the laborer from the plow-handles. T'he whole machine is only four feet long, and weigbs about 270 pounds. The teeth are about 12 inches long below the plate.
The inventor says that this implement is used in subsoiling by following in the furrow of a common plow. It loosens the gronnd 12 inches deep and wide, and leaves it finely palverized. In the work performed, the inventor states that it is far superior l) any timilar machine, and is much easier for a team. In ditching it will loosen the soil or hardpan, and in one day it will perform more work than fifty men could in the same time. 'l'his invention was patented on March 31, 1863 ; for further information apply to the inventor, W . D. Strowger, Oswego, N. Y. (where the machine can be seen in operation), or to Eben Mason, 101 Water street, New, York.

Naval On-dit.

The Navy Department has received the following proposals from responsible ship-builders for the constructlon of the new ocean iron-clad navy. The plans, however, will not be ready for monthe to come, and some three years will have to elapse before the vessels can be fit for use, thus rendering it certaln that 1866 will come befure the formidable craft can be reedy for service. Although the bids were to close on the 18th of April they are still open, and will beso for some days. The parties who are willing to build are :-Messrs. Merritt \& Sons, Phila delphia, one vessel ; Archibald aud Reany, Cheater, one vessel ; 'Thomas F. Rowland, Greenpoint, on vessel; Romeo Underhill, New York, one vessel ; the Atlantic Works, Boston, one or two vessels H. M. Figaro, Philadelphia, one vessel. A Mir. Tufte offered to build one on his own plan. The price put in for these vessels ranges from four millions one hundred thousand to four millions four hundred thousand dollars; the estimate of SIr. Underhill, of New York, being the highest. If ten of these vessels were built, at two and a quarter millions each, they would cost nearly a year's navy estimate-over sixty millions-before their armament and general wants could be supplied. Tbe dimensions of this fleet proposed for will be greater than those of any iron-clad yet concelved. It was learned in the engegement with the Charleaton fortsand that with Fort Mcallister that the chief danger caused to the Monilors in both those fights arose from the bolts, which secured the iron plates, being driven inward by the force of the impact, thus occusioning the serious wounding of the inmates. Aside from these defects the Monitors have been proved invulnerable to the heaviest metal yet thrown against them. Tbe remedy for this defect has already been discovered, is patented, and has received the approval of many scientific men. Mr. Maxmilian Wappich is the inventor of a method of fustening iron plates upon vessels, turrets or forts, by a procese which entirely obviates the use of bol te extending through the outer plate of the armor. Each cornerof the outside plate is turned at an acute angle, and forms a bolt of length sufficient to extend to the interior of the vessel or turret, where it is secured by a key. In the center of the plate are two similar bolts, which secure the middle of the plate. The iron forming the inner sheathing is secured by means of those bolte, and thas the external surface is unbroken and not meakened by holt halen. The
joints of the plate are made to fit perfectly, and when all are keyed together, the union is more perfect and stronger than could be effected by riveted bolts.Philadelphia Inquirer.

Photographic Papor at High Altitudes.
Mr. Glaisherand Mr. Cox, aeronauts, made another ascent lately in England, reaching the bight of four miles and a half. They were nearly carried out to sea, and only saved tbemselves by a rapid descentfalling the last two miles in four minutes. The most curions fact elicited by this ascont is, that the action of the sun's rays upon "sensitized" photographic paper is much less at great altitudes than near the earth's surface! Mr. Glaisher took with him slips of such paper, and arranged that similar slips should be exposed at Greenwich Observatory. and the amount of colviation noted simultaneously

STROWGER'S PATENT DITCHING MACHINE.

Counting Chickens before tery are hatobid. The Charleston Courier is in trouble as to how Charleston cau get lumber to rebuild the Palmetto city. The Confederate Government must monopolize an the railroads for many months after peace is declarsd and independence secured, to get cotton to the seaboard, to send to Europe to pay Confedurate loans, says this learned scribe, and in the meantime Cbarleston must suffer for the want of lumber. If Cbarleston is not to be rebuilt till the independence of the Southern Confederacy is established, the Courier man need not worry about lumber.-Sunday Dispotch.
Sbveral more of those machines for removing torpedoes in channel-ways have been despatched South, and Commodore Dupont has now the means at haud for deatroying the torpedoes. The length of each machine is about fifty feet.
Incrbmation.-The human body is, in general, eo little prone to combustion, that it requires a very considerable time, with even an abuadant supply of fuel, to reduce it to ashes. Dr. Christison (the eminent medical jurist) states that the quantity of wood required to burn the body of an adult is about two cart-loads. The last man burned at the stake in Europe (except one in Spain) was in Normandy, and it required two large cart-loads of faggots, andseveral hours to effect complete combustion. Among the Romans, so much wood was required to consume a body, that it was too expensive a
in the balloon was exposed to the full rays of the snn, with this extraordinary result-that, at three miles high, the peper did not color so mach in hal an hour as in the grounds of the Royal Observatory in one minute! This would seem to indicate that the chemical effects of light are largely dne to its paseage through the atmoephere, or at least to the denoity of theatmeophere through aiblot it has recently peced.

miscellantaje bucyary.

Thy New Orleans Picayune states that 14,151 backs of rice were sent from Plaquemine parish to New Orleans in 1862 and 1863, against 18,864 in 1861 and 1862. A sack holds 100 pounds of clean rice. A bushel weighs from 45 to 58 pounds of clean rice. The weight of a barrel of rough rice is 160 pounds. An acre of land planted with rice, on a general average, sields about fifteen barrels of rough fice. Two barrels of rough rice make one barrel of clean rice, weighing 200 pounds, net. For the last three or four months the consumption of creole rice in New Orleans has averaged 500 sacks per week. April prices-6ł @ 8c. for No. 1 ; 51 @ 6c. for No. 2 ; and $2 \downarrow$ @ 3c. for No. 3.
We learn from the Mining Gazette (Houghton, L. S.) that several rich lodes of copper have recently been discovered in the Portage district. The editor bays "At every point where it has been oncovered, the rock broken out is well filled with shot oopper, and in ragments of the outcrop pieces of barrel-work weighing ten and twenty-five pounds have been found. Experlenced men, who examined the vein, pronounced it the richest show they have ever seen in the district, not even excepting the splendid appearance of the Pewabic lode, when first opened."
The St. Louis Ropublican states, as one of the facts illustrating the magnitude of the war, that 31,184 horses and 19,727 mules were purchased in that city for the army during the year ending March 31, 1863 they cost $\$ 5,911,000$. Most of the animals were brought from Illinois and the northern parts of Indiana and Ohio; Missouri having been exhausted early in the commencement of the rebellion.

Tes ganboat Penobecod, Commander De Haven, is now nearly ready for ses again. The propeller of the Penobscot, as with some others of her class, has proved too small for her engines. The fact that her fires were out less than ten times, and that her serew made five millions six hundred thoussad revolutions, shows the exhansting wear and toar to whioh our blookeders are subjeot by the дature of the service.
mode of disposing of the dead to be

adopted by the common people.

"Ws learn from an Eastern exchange that ten thonsand cows are required to supply Boston with mllk;" so says tbe Sunday Allas, which also facetiously remarks: "The number of bydrants required to furnish New York with the same material does not seem to be mentioned.'
Tei Lynchburgh Virginian, commenting apon the statement that tenpenny nails are passing as currency at five cents each in the upper part of North Carolina, remarks: "We have no such metallic basis for our currency here. Our circulating mediums are grains of corn, representing five cents, and quids of tobscco, representing the decimals."
About 20,000 dozens of spools of "ivory-ínished" spool-thread are manufactured weekly by Green \& Daniels, Pawtucket, R. I. Their numbers range from 16 to 100 . All the fiue numbers above 60 are made from Sea Island cotton.

Maple Sugar.

We recently questioned the legality of selling maple sugar as confectionary and taxing it as a necessary article. We find the following item in reference to this subject from the Revenue Office :-

Treas'y Drpt., Office Internal Reveneb,
The production of maple sugar is a manufacture, an liable to a duty of three per cent ad valorem. Maple sugar, when compounded with other sugars or wrough into confectionary, is liable to the same tax as is imposed by the amendment to Section 75 (Bee $A c t$ of March 3d) apon other confectionary. Edward McPeerson.

Compliment to Mr. Alban C. Stimreb.-Mr. Alban C. Stimers, the naval engineer who was in charge of the Monilor at the time of her memorable attack on the rebel steamer Merrimac, has been presented with a service of alver ia consideration of his efforts on that occasion, by some of the principal men of this city. Many prominent names in the community were subacribed to the fund; among them we notice Wm. H. Aspinwall, John Ericbson, Howard Potter, and others. Mr. Stimers responded to the compliment in a brief note, expreseing himself as highly flattered and pleased by the compliment.
The Waterbuay Bease Mills.-We have recontly made the tour of some of the principal brass-working manufactories in Waterbury, Conn., and shall devote a considerable portion of our space, for some time to come, to the various branches of the business, and the operations by which buttons, lamp-burners, metalllc business cards, percussion caps, thimbles, \&c., are produced. These articles will be found to cantala popular information and will repey perusal.

