Grientific Amexican

NEW-YORK, DECEMBER 4, 1852.
Old and New Inventions.
We are conservatives in respect to inventions which are old and useful, and reformers in respect to those which are old and of an inferior character. Plain common sense teaches any man that it is foolishness itself to prefer an invention merely because it is new, and deride another merely because it is old. We are also advocates of all that is new and useful, but it requires experience, a great amount of knowledge, and disinterested judgment to tell what is new and useful; whether it has been employed before and superseded by something better, or had been before proposed, experimented with and failed, or has inherent defects. It frequently happens that old and exploded inventions are revived and presented
to the public with the most glowing eulogies of their superiority and incomparable qualities; and it no less frequently happens that others possessing inherent defects are as prominently paraded and more vauntingly advocated. It is our duty-and we have of ten to perform it-to expose the worthlessness of the one class and the errors of the other. This we do without any reference to private and invidious prejudices-for we have none of them-but as public journalists speaking the truth as we believe it. We believe that much
wrong is prevented from being perpetrated on wrong is prevented from being perpetrated on the public by timely exposures of unworthy objects, many of which it has fallen to our lot to hold up', either to scorn (according to the manner in which they were heralded) or to a candid and kind criticism. Almost daily, we have either old or inferior inventions presented to us for our opinion, by honest and worthy inventors, many of whom are disappointed at
discovering the age or inferiority of their plans, but generally all satisfied with our conclusions. Two years ago we were asked for our opinion about propelling a ferry boat across a river in South Carolina by the power of a huge spring wound up with a crank; we informed the inventor that the same device had been applied to a boat in this city in 1808, and that it had inherent defects. ${ }^{\text {s }}$ Nothing but and that it had inherent defects. Nothing but
a trial, however, would satisfy the inventor, a trial, however, would satisfy the inventor,
and that did satisfy him to his cost, but he thanked us for our information. Three years ago a gentleman in Syracuse, N. Y., asked our opinion about a substitute for the crank which he had invented; we gave our opinion that there was no loss by the crank, and it was the most simple and best device ever invented to convert rectilinear into rotary motion.The inventor concluded he would try his own device; the result of his experiments, however, confirmed every word we had said, and his testimony to this effect w $\boldsymbol{\varepsilon}$ published on page 99, Vol. 5. We could name a great many such cases, but we have not room to do so. Of the many public exposures which we have made, not one, we believe, has turned out different from what we predicted, although we are liable to make mistakes as well as others, for none are perfect, but we are disinterested. In our last volume we gave our opinion respecting the worthlessness of a project which was presented to the public in this city for navigating plank and common roads with steam carriages. It would have been easy to
have proven us incorrect if we were wrong, have proven us incorrect if we were wrong,
by the said company putting their plans in operation; and when we consider that this could have been done at no very great outlay, and that the company was composed of editors, lawyers, artists, \&c., who make pretensions to science, and practical mechanics, it is certainly presumptive evidence that some of certainly presumptive evidence that some of
them have become convinced that we were them have become convinced unat we were
right, if not, they have acted unwisely. It is right, if not, they have acted unwisely. It is
now eighteen years since Robert Mills, enginow eighteen years since Robert Mills, engi-
neer and architect in Washington, published a pamphlet recommending the adoption of steam carriages for common roads. At that time, (1834) railroads were almost unknown in our country; there was but a single short railroad then in this State, (N. Y.) Since then railroads have multiplied until they
have laced our entire country with an iron have laced our entire country with ate steam
network of 12,000 miles. To advocate stean network of 12,000 miles. To advocate steam
carriages on common roads now, when we have railroads on which the resistance is

twenty tim judgment.

With respect to new and superior modes of travelling; too much attention cannot be bestowed upon them. The steamboat and railroad are fast revolutionizing the world; but it is not to be supposed that we are yet at the end of such inventions and improvements. A means of sately, cheaply, and rapidly navigating the atmosphere may yet be invented, bu no plan hitherto proposed or tried meets these positively necessary conditions; we confess, however, that we have far more confidence in balloons than steam carriages on ful must not only be new, but useful-an improvement. Any plan or invention having these qualities, no matter by whom invented or proposed, we advocate with pleasure and hail with delight.
The Effect of Climate on Health....Consumption
" Man is born to trouble as the sparks fly upward." It is well known that peculiar diseases belong to peculiar climates. Thus, for example, consumption is the most prevalen disease in Britain, the New England States of America and nearly the whole of New York State; the young and the lovely are its victims and it leaves its impress on some families for generations. The tender plant grows up in oveliness and beauty, but just when the bud is ready to burst forth and bloom, there comes the chilling frost of consumption, and the expanding leaves and bud begin to droop and decay. It spares no rank, yea, rather those who are blessed above others, and more exempt from common troubles on account of their wealth, are more otten the victims than the children of the poor. On this account, its general prevalence, and deceptive character, it has received more attention from medical men than any other disease. Its local causes have long been understood, but the remedies suggested are exceedingly numerous. Many paients linger so long and hope so much, that quackery with its brazen front has found an ample field for pandering to the hopes and credulity of the weak. In general, respectable physicians have counselled a change of climate, and invalids from the Northern States have generally gone to the Southern States, and the West Indies; those of England went to the South of France or Italy. Lately, some English physicians have come out against a change of climate, especially a mere change rom a cold to a warm region, asserting that some warm regions are more dangerous to
invalids than their own cold native hills and valleys. Dr. Burnett, of Boston, has written an able article on this subject to the Boson Medical and Surgical Journal, in which he ttributes the prevalence of consumption in the New England States to the intemperate changeable climate, the tendency of which is to produce disease in the pulmonary organs. The only season of the year when the climate is favorable to lung diseases is during the month of September, and the first part of Oct., when the air is warm, dry, and quiet. It has been customary for Northern invalids who
went South to return when benefitted. In ge neral, all who did so have been re-attacked, and finally carried off (sometimes very suddenly). From statistics and information which Dr. Burnett has been collecting, he has come to the conclusion that consumptive invalids, to be permanently benefitted by a change of climate must go South and make their home there. They must also go there in the early stage of the disease, for when too weak they but leave home to die. The climate of Greenville, in South Carolina, and some parts of Georgia is exceedingly favorable to those laboring under this disease; in summer the temperature rarely exceeds 90°, and is free from sudden changes. Dr. Burnett is of the pinionthatthe American States possess a variety of climate and advantages for this disease,
far superior to those of Europe, and as the far superior to those of Europe, and as the
people of England-those possessed of wealth are becoming dissatisfied with Italy and Madeira, it is not improbable that with the present rapid Atlantic steam communication, our country may soon become the home of many of the noblest and most wealthy of her inhabitants. If they are wise for themselves home on the western continent.

Volcanoes, their Causes---Igueous Theory. With our ideas of volcanoes we always as-
ociate the grand and the terrible; and a volcanic eruption-a huge piece of artillery, with a mouth perhaps miles in circumference, shoot ing up rocks and burning lava-is truly a terrific sight. Volcanoes are exceedingly plentiful on our planet, there being no less than six-ty-three principal ones; still, they are confined to certain localities, which occupy but limited portions of our globe. The question has often been asked, "what is the cause of volcanoes?" And truly, when we consider how disastrous some of these eruptions have been, no wonder the question of their cause very reflecting mind. It is one well worthy f some speculation, and requires a considera ble amount of scientific knowledge to investigate, and this may be usefully employed either in pointing out errors or presenting new facts. arious opinions have been expressed respect ing their origin and activity. One thing is certain, they are in no way connected with so lar influence, for they exist under the tropic of South America, and are found in the frosty regions of Iceland. It was the opinion of Darwin, that the volcanic districts of the world had earthy crusts resting on lakes of igneous melted matter. Humboldt believes that the volcanic region of Quito, in South Americathe whole of that vast Plateau-is a single volcanic surface, composed of a solid crust covering a lake of molten matter. Such opinions, however, have nothing to do with a general theory, of which there are two-one is astronomical, and asserts that this earth was live on its crust, beneath which all is molten fiery matter; the other theory is chemical, and asserts that they are caused by explosive materials deposited in huge quantities in the volcanic localities, and which, when saturated by some means with oxygen, and ignited, act exactly like any explosion of artillery. Leibnitz first suggested that this earth was originally in a fiery fluid state ; Sir Wm. Herschell afterwards suggested the hypothesis of matter being originally in a nebulous state, which, by condensation, developed great heat, and our earth became a fiery ball, the surface of which we now live upon being a mere crust, the rest not being cooled yet which, when reached by water, causes an explosion like a steam boil-

This is the nebular igneous theory.
The author of "The World Without" st how easy it is to account for volcanoes by this theory, by stying-"according to the fiery nebulous theory, the earth, at a depth of sixtyive miles, is 7000 degrees temperature, and if water percolates through fissures of the earth, we havea sufficient explanation of earthquakes and volcanoes."
This theory is unsound, and will not stand the test of scrutiny. The arguments adduced to prove that the interior of the earth is a fiery molten mass, is, the increase of temperature found to exist as we descend in some mines, which is about 1 degree for every 45 feet. According to this rate, at 25 miles depth, the
melting point of iron would be obtained; but melting point of iron would be obtained; but we have no facts to prove that the heat of the earth increases regularly to the centre; after a certain depth, it is perhaps uniform. What signify the experiments made in a few mines not over 2,000 feet, deep. From observations made by Kotzebue, Beechy, and Sir James Ross, the fact seems to be established that the waters of the ocean (it is also matter) are uniform in heat, at the depth of 7,200 feet. At the depth of 100 fathoms, as stated in Maury's Wind and Current Charts, the temperature of the water in "the cruise of the Taney," was 64°, while at 50 fathoms, one half, it was 70°. In the soundings by the sloop-of-war Albany, at 680 fathams, the temperature was 81°, while that of the air was 830 , and at 995 (5970 feet) fathoms it was only 80°, while the temperature of the air was 79°. Now if it were true that the heat increased downwards, at the rate of one degree for every 45 feet, as asserted by some, then with a temperature of air at 79°, the water of the sea at 5985 feet of depth, should be at the boiling point-212 ${ }^{\circ}$. Instead of this it was only 80° at 5970 feet, only 15 feet less. How does this accord with uniform increase of heat as one descends into he matter composing the earth ?
Dr. Daubeny, and Sir Charles Lyell are ad-
vocates of the chemical theory, and the latter is a decided opponent of the central theory of heat. It is well known that when potassium is dropped upon water, it causes an explosion; if, in certain places of the earth, there were arge deposits of this metal, and water percolate to or come in contact with it, a terrific explosion would ensue. It appears to us that volcanoes are local, and generally preceded by earthquakes. If the centre of the earth were fluid, according to the well-known laws of fluids those earthquakes, caused by volcanoes would affect equally every part of the earth's urface, a thing which we know they do not. Our attention was directed to this subject y reading some accounts of the recent eruption of Mount Etna. There is no positive certainty respecting the real cause of volcanoes; but the general, yea, almost universal opinion expressed by writers on the subject, is hat water in some way is an active agent in all eruptions. Water, however, in all likelihood, exerts no agency whatever; and a strong argument in proof of this, is, that in the moon there is neither atmosphere nor water, and yet the volcanoes of the earth are mere dwarfs
compared with those on our satellite. Our compared with those on our satellite. Our vailing then, are distinctly opposed to the preto plead ineous theory, and we choose, rather, than adopt any theory which cannot stand the test of scientific analysis.

Dinner to Inventors in England.
On the 3rd of last month, (Nov.) one hundred and fifty gentlemen interested in patents sat down to a sumptuous dinner in Birmingham, to celebrate the British Patent Law Amendment Act. Muntz, the inventor of the metal which bears his name was there, so was Prosser another eminent inventor, and Hindmarch and Webster, the two able counsellors and authors of works on patents were among the number. Some fine speeches were made, and inventors were congratulated on the boon they had obained. Mr. Prosser said he was not yet satisfied, he looked forward to the time when patents would be obtained for half a crown, and specifications for one penny. (he forgot that the copyist needs pay as well as the inven tor). Mr. Hindmarch spoke sensibly; he advocated the enrollment of the complete specification on receiving the patent. Mr. Webster contended that a mere outline description of an invention was enough when the patent was granted, always allowing six months for enrollment. He considered that with a few modifications the patent law was a good one, and he hoped, for the sake of inventors, that it would be long before Mr. Prosser's hopes were realized. He considered that low fees would make patents less valuable in England ; this statement was allowed to be true, and met with a general response. He made a fierce onslaught on the opposition which
was manitested against the bill by some memwas manirested against the bill by some members in the House of Commons, and completely demolished the trashy arguments (like those advanced in the New York Daily Times,) against patents. "The foolish idea," he said, "had got into the head of some men that patents werebad things, this was an idea which should be got rid of by every man who entertained it."

A Large and Small Wheel
Messrs. Editors.-In No. 10, Scientific American, you expect some of your friends in Muncy to prove how much the small wheel slides that is secured on the axle with two wheels of double diameter, (6 feet,) I will answer; it will slide exactly the whole of its circumference, and roll the whole of its circumference, which is $3 \cdot 14159 \times 3=9 \cdot 42477 \times$ $2=18 \cdot 84954$. We measure the distance which the large wheels travel by the point of tread upon the rail, which is a perpendicular line drawn through the axis, consequently the axis is drawn through a space of 18.84954 feet in one revolution of the large wheels, therefore, as the small wheel makes only one revolution, and its axis passes through an amount of space double its circumference, it follows, that it must slide $9 \cdot 42477$ feet.
The error which you also wish pointed out is the use of the word will not slide; it was Muncy, Pa., Nov. 24th, 1852.
Muncy, Pa., Nov. 24th, 1852
[R. M. B. is right; the communications

Reported Officially for the Scientific American
LIST OF PATENT CLAIMS

 guiating the distance of wordsin the same line from
one another, and "correcting proof, in the manner
net form set forth

Drying PuINrs-By Heman S. Lucas, of Chester,
Mass. - Iclaim the process of treating magnesian
 and iron, and similiar rocks, by mineral acias, topre-
pare from the sedimentary or insolube, or undecom-
 igments, as set forth

Harverstrrs-By Johu H. Manny, of Waddaws Grove, Ill: I claim, first, the arrangement of the

 swath will run in the track cleared by the former,
when the machine was cutting the previous swath, as set forth.

 other fibrus obstructions to pass in bet trean the
cutter bar and the sides of the recess in the upper
curt of the

 impediment to their
the standing grain.
Tourth in
Fourth, in combination with a rocker stand or
seat, a removable platform, constructed with a wing seat, a removable platform, constructed with a wing
that extends rom the outer end of the cutter, over
the frame, and holds up the butts of the straws above the stubble, which otherwise would obstraws
the ischarge of the grain from the platform, subthe discharge of the gr
stantially as set furth.
Printing Presses-Byy Chas. Montague, of Pitts-
fiold, Mass: I I claim placing the bed-plate in a vertical position, when a reciprocating motion is im-
parted to it, by which the impressions can be made parted to it, by which the impressions can be made
at each forward movement of the said bed-plate, as
set forth. set forth.
I a soo claim the combination of the verticallyact-
ing bed, with a cylinder or cylinders, arranged in
such a manner that the forward movement of the such a manner that the forward movement of the bed will impart motion to the cylinder or cylinders,
to give or take an impression and allow said cylin-
der or cylinders, to remain stationary during the return
forth.
Boor Trese-By David Sadleir, of McWilliams-
town, Pa: I I laiam, frst. the arrangement and com-
bination of the bination of the levers, friction rollement screw, com- and
slide, or their equivalents, with the back part of the slide, or their equivalents, with the back part of the
tree, which, when constructed, all bed closely there-
in, for the purpose described. Printing Presses-By A. H. Cragin, M. Buck,
J. H Buck and F. A. Tenney (assignors to A H. H (rasin), of Lebanon, N.H.: We claim, first, the arrange-
ment and combination of the movements, in connection with the bed, by which an extent of motion is
imparted to the said bed, much larger than that of the sweep of the operating crank, whilst the whole
of the said movements ooly occup the space with-
in the in the frame work of the press below the bed, ine
pinion shath having pinions upon it, which garinto
stationary racks, B B, made fast to the sides of the

 nionshaft, and its opposite end jointed tothe lever
that rises from the oncillating shaft, and the pitman
connecting the said lever with the crank on the driviag shaft, or the equivalents of the said movements,
when combined and operating as set forth; dis-
claiming, however, the principie of imparting moclaiming, however, the principle of sef imparting dis-
tion to a primting press, bydirect application of pow-
er to the bed. er to the bed
Second. the
pressure cylinder and the bed with the conveying
bands, nippers and cams for operating the said nipbands, nippers,
pers, as set forth.
Third
pers, as set forth.
Third, the arrangement of the upper and lower
tables with the pressure cylinder, bed, convering bands, nippers, and cams for operating the nippers in
buch a manner that an impression can be made at each right and each left movement of the form un-
der the cylinder, and the sheets be deposited after recieining theiri impressions upeon the said lower ta-
rese, substantially as set forth. $\mathrm{W}_{\mathrm{HIF}}$
Whiflatrar -By D. C. Williams, of Madison,
Ohio I I claim a ashaft with the ends bent at right an-
gles. and the lever making part of the same, arranOhio: I claim a shaft with the ends bent at right an
gles. and the lever making part of the same, arran
ged and operating as set forth.

 a cup tube, or case, with a metallic stem, rod, or oth
er fixture, not fusible at the melting temperature of
thealloy, which stem, rod, or other fixture, is hel thealloy, which stem, rod, or other fixture, is held
or kept in posisition whilst the allooy remains hard;
but when said alloy is fused, said stem or its equi-
valent, can move or have valent, can move or have motion, by which liberty
to move any arave may be liberated, or caused to to
open and jet steam escape, or any alarm may be let open and Jet steam escape, or any alarm may be let
off, or any index moved, so that this combination may act as an alarm indicator, or safety apparatus.
Also, in combination with said alloy and plng, the
heavy slotted weight, lever, or its equivalent, and
sazety safety or escape valve and its ordinary weight, acti
in the manner and for the purpose described

Recent Foreign Inventions.

New Composition for Rallways and Williams, of Stratford, has patented a compoWilliams, of Stratford, has patented a compo-
sition to be used in railways and other structures, in lieu of iron, wood, or stone, and for buildng purposes generally. One of these compositions consists of 180 lbs. pitch, $4 \frac{1}{2}$ gallons creosote, 18 lbs. resin, 15 lbs . sulphur, 45 lbs . finely powdered lime, 150 lbs gypsum, and 27 cubic feet sand, breeze, scoria, bricks, stone or other hard materials, broken up and es. The sulphur is frst melted with 30 lbs of the pitch, after which the resin, and then of the pitch, after which the resin, and then
the remainder of the pitch is added with the the remainder of the pitch is added with the
lime and gypsum, by degrees, and well stirred till the mixture boils. The earthy and stony materials are then added, and the creosote mixed in, when the composition is ready for moulding into blocks, to which pressure is applied. The claim is the mode of preparing such composition, particularly the use of sulphur therein.
Preparing Madder-C. A. Kurtz, chemist, of Manchester, Eng., patentee. The improvement is for treating madder roots and ground madder, or munjeet, for calico color-makers. The patentee takes 20 lbs ., of crushed malt and boils it in 100 gallons of water for half an hour; he then stops the boiling and adds 45 lbs. of wheat bran, stirring the whole toWhen and then allows the fiquor to settle. 65 gall settled the clear is run off, and to every 65 gallons of it 100 gallons of water are add-
ed, which is placed in a copper vessel and ed, which is placed in a copper vessel and
heated to 112° Fah., and to this is added 3 cwt., of madder or of munjeet ("Rubia Munjista"), which is stirred at intervals of $15 \mathrm{mi}-$ nutes, until a homogenous mass is produced. In this state the mass is allowed to stand until it exhibits symptoms of fermentation, when they are checked by successive stirrings tor 18 hours. This prepared madder is then filtered, pressed, dried, and ground, and packed away for use like garancine.
To Prevent Incrustations in BoilersM. Libbald, patentee-To prepare the compound, take one pound melted tallow, one pound of black lead, two ounces of powdered charcoal, and one gill of gas tar; these are well mixed together, and present the proportions of the scale preventative. This compo-
sition is applied while hot, with a brush, to the inside of the boiler. It also makes a good black paint for fences, outhouses, \&c.
Explosive Compounds-S. Davey, of Roun, and A. L. Cance, of Paris, France, paten-tees.-The explosive compound is formed of 6 parts, by weight, of the chlorate of potash; 5 parts of nitrate of potash; 5 parts sulphuret of antimony ; 2 parts yellow prussiate of potash, and 2 parts bichromate of potash. A seed of 6 parts chlorate of potash; 3 parts nitrate of potash; 3 parts sulphuret of antimony, and 4 parts of the prussiate of potash. Each of these ingredients is separately ground to a fine powder, and the whole of them, when so ground, are thoroughly mixed together, when the said two compounds are fit for use.
Machine for Restoring Human HairR. Griffiths, England, patentee.-This is a new touch in the hair restorative art, and does not consist in any of your lotions, \&c., but a real true-blue mechanical operation. It consists ot a machine containing combs and brushes, so
arranged and constructed as to produce a gal-
vanic current when used. The teeth of the combs are made of copper and zinc, alternatehind part of the camb, in which is placed a flannel saturated with salt water as an excitant. The object of the invention is to excite an electric current when the combs or brushes are used. The brushes are made of fine copper and zinc in place of bristles.

Vinegar---Its Adulteration
It is our opinion that adulterated liquors of every description are manufactured and sold in great quantities in our city. Out of a hogshead of whiskey, nine or ten different liquors Pure made and palmed offfor the real Simon liquids besides those containing alcohol. V1liquids besides those containing alcohol.
negar, for example. Are we sure that all the vinegar sold in our city is genuine? No, we are not. The majority of people do not know how to judge of good acetic acid, they are perfectly satisfied if what they get for it is perfectly sour in taste and has the yellow color of the excellent old cider vinegar, that is made by our farmers. It is easy to make a cheap spurious article, and no doubt hundreds of people daily use a mixture of vitriol, wagar, because they have purchased a liquid of gar, because they have purchased a liquid of
that name. The manufacture of spurious vinegar is an old story, we have heard an old soldier who fought on the frontiers during the last war, state, that the troops were often
served with vitriol and water for vinegar served with vitriol and water for vinegar
while at Oswego, and their health was affect ed by it, until he discovered the imposition and where it was manufactured-a few miles distant in the woods.
Where there is no cencorship exercised over he manufacture of such liquors or liquids, there is great room for evil doers to do acts of the
greatest enormity-we consider that the adulgreatest enormity-we consider that the adul-
teration of any article of food or drink is almost venial crime. In London there is an analytical sanitary commiss:oin of eminent articles which are daily used by the people and sold wholesale and retail. They report the names of those whose articles are adulwhose articles are pure. The late report of the committee states, with regard to vinegar and its adulterations, that out of 28 samples purchased at the houses of various retailers in different parts of the city, and the productions of almost every maker of any
note by whom the entire metropolis and its note by whom the entire metropolis and its suburbs are supplied, only tour out of the
above number were free from salphuric acid or oil of vitriol ; that twenty-four were adulterated with that powerful and corrosive mineral acid; that two contained it in a small quantity only; that in three it was present in considerable amount; that 12 con-
tained it in very considerable amount; and that in seven it was present in immense quantity. The report then publishes, as usual, the names of the parties selling and the makers of the adulterated articles, together with the names of the makers (unfortunately only four) and venders of the pure article. The fact of the vinegars of these four makers being found to be entirely free from sulphuric portant, inasmuch as it proves most convinportant, inasmuch as it proves most convin-
cingly that the use of that highly objectionable acid, even in small quantities, is not necessary to insure the preservation of vinegar, and shows that its addition is made rather for the purpose of increasing its apparent strength. The report concludes bv publishing a letter
from Mr. Fletcher, surgeon, of Bromsgrove, from Mr. Fletcher, surgeon, of Bromsgrove, showing how families might manufacture for themselves, by a very simple process, sufficient vinegar for the table, or for the purpose ter, and a fungus known as the vinegar plant, ter, and a fungus known as the vinegar plant,
and thus make themselves independent of dishonest manufacturers.
Every American family knows how to make vinegar; it is therefore needless tor us to tell how this can be done; but at the same time, we must say, that there are so many families in cities like New York, who have not the conveniences to make it, and it is so much easier to buy than to make it, that there should not be the least necessity for doing so,
aged. We should have an analytical sanitary commission in this city, to examine both socles sold, and those punished who sell adulterated articles. Now what would our Common Council say to the appointment of such a commission? We believe if such a commission was appointed, a great amount of good would be accomplished by it. . Let our Al dermen think of it; the subject is a very important one.

A New Propeller for Steamers-
Professor A. Crestadoro has just secured under the new patent law, an interesting scheme or propelling vessels.
He considers the use of paddles or blades to be a mistake similar to that which so long prevailed in the application of locomotives on railroads, and which materially retarded the progress of that invention, when, taking for granted the inability of the plain circumfe rence of the wheels to propel the carriage much labor and skill had been wasted in the contrivance of levers; which acted on the road in a manner somewhat resembling the feet of the horses. Now, as the appprehended insufficiency of the adhesion of the plain circumference of the wheels with the road to propel the carriage has been proved a fallacy, so he considers the necessity of paddles or blades, of whatever description they may be, as altogether fallacious and that the best and cheapest method of improving the propeller is to use simply the plain circumference of cylindrical drums. It is a natural supposition that a plain round surface should have no tractic adhesion with the water; but on close examination it will be found that not only such is not the case, but what is even more surprising, the tractic adhesion of a plain cylindrical drum is far greaterthan that of a paddle-wheel ot equal size.
Taking, for instance, the steam vessel Atlantic, wbose paddle wheels are of 35 feet diameter, and length of paddles 12 feet 6 inches, supposing a moderate immersion of five feet paddles-one pair of drums of equal size at equal immersion would displace a pair of cubic segments of about $135,631 \mathrm{lbs}$. of water, or, what amounts to the same thing, a pressure of not less than sixty tons would act upon the drums as a tracticadhesion which is by far superior to that afforded by the best method of paddle wheels in the most favora ble circumstances. Now, the cylindrical propeller has the substantial advantage that it can be, when reduced to a moderate diame-
ter, applied as well as totally immersed, if it be, (as proposed by the patentee,) fitted into a semi-cylindrical case, with only such a clearance as is just sufficient to let the drum have a proper action, the other half drum or semi-cylindrical projection being out of the case for the propelling action. - [English paper.
[There is a decided mistake in the conclusions of Prof. Crestadoro. No mortal man but himself, we believe, ever would suppose that paddle wheels were invented because it was believed that broad sheathed wheels
would slide on the surface; such an idea would slide on the surface; such an idea mistake as that referred to was ever made in the case of steamboats. The two modes of propulsion are entirely different, the one is by traction, the other by the displacement of an incompressible fluid. Now, the action of a rigld body passing over another rigid body, is altogether different from what it would be if propelled throngh a fluid. We have also to state that drums have been tried as substitutes for paddles, but as might be expected, proved utterly incompetent. We cannnot see led away by science permitted himself in the above extract.

Telegraph between Quebec and Detroit. The process of laying down the submarine wire across the Bay of Quinte, for the trunk line of telegraph now in course ot construction between Quebec and Detroit, was gone through last week. The submarine wire, which works admirably across the bay, was manufactured in London.

All plants have a season of rest; discover what season is peculiar to each, and choore what season is peculiar to
that season for transplanting.

