

Flax Cotton.

M. Hamel lately delivered an address be fore the Imperial Academy of Russia, on the subject of Flax Cotton, in which he gives a different account of its invention to what is generally supposed. According to him, a native of Holstein, named Ahnesorge, by trade a dyer and bleacher, had applied himself for se veral years to improving flax spinning, as well as to turn to account the tow, which is of lit tle value. For this purpose he made severa journeys, and in 1838 went to St. Petersburgh with a sample of about a dozen pounds of a cottony material from flax tow. In 1846 the king of Denmark, having been informed of M Ahnesorge's industrious efforts, sent him a sum of money to help in establishing a manufactory, but just as he had begun, at Neumeistler, the manutacture of cotton and wool en fabrics, mixed with his cotton from flax tow, the disastrous war of the Duchies broke out, and M. Ahnesorge sought refuge in London, where he arrived in October, 1848.
Having applied to one of the principal patent agents for advice, on what steps he should take to procure a patent for his invention, he was introduced to M. Claussen, who, delighted with his project, made an agreement with him, by which he was to take out the patent in his name. Ahnesorge commenced his labors in M. Claussen's house, in London. His articles were highly spoken of, but he wanted the necessary funds to develope the manufacture. A native of Hamburgh, named Auguste Quitzow, settled at Bradford, under the name of Quitzow, Schlesinger \& Co., and to whom Ahnesorge had been recommended in Holstein resolved to carry on the manufacture in a large way Yorkshire. He bought a place at Apperley Bridge, between Bradford and Leeds, and with the consent of Claussen, engaged Ahnesorge to prepare the flax, and make the cotton according to his method. M. Hamel says that all the samples, both white and dyed, exhibited at the Crystal Palace in the name of Claussen, as well as in that of Quitlow, Schelennger \& Co., were made at A pperley Bridge by M. Ahnesorge ; the public were not informed of this circumstance. The attempts to card and spin Ahnesorge's products were made near Rochdale, in a factory that Mr. Bright, the well-known politician had placed at the disposal of M. Claussen, who had, in fact, taken out the patent in his own name. The high price of cotton, at the time of the Great Exhibition, had led to the hope that a project for substituting flax would easily find purchasers, and this was the reason why M. Claussen, described, in this patent, a process for cutting the cotton flax into small pieces, of the same length as the cotton ovings, so as to be able to card and spin them nin nthe machine con. Be sides, he wishes it to be supposed that, by placing this flax thus cut up, after it has been boiled in a solution of bi-carbonate of soda, into sulphuric acid diluted with water, it will split, from developing carbonic gas, in appearance resembling cotton. M. Claussen ha started a company with a capital of $£ 250,000$ to $£ 500,000$, to carry on the manutacture, and he exerts every possible effort to obtain purchasers for his patent. To exhibit his patented process of splitting the flax, he has rented a place at London, where M. Ahnesorge (who is never named) has first to prepare the flax or tow by boiling it in a solution of soda, and where, atterwards, the experiment of chemical effervescence is made before visitors. Thi is called the splitting process.
M. Hamel declares it to be impossible to change the flax into a fibrous matter resembling cotton, which is the work of nature. He is decidedly opposed to the project of cutting up the dressed flax into a sort of tow. The superiority of flax over cotton consists, in a great measure, in the greater length of its fibres. The result, therefore, would be to convert a primary valuable material into a very inferior one.

With the aid of Lord Rosse's great telescope every object on the moon's surface, of the height of one hundred feet, may be distinctly seen. Craters of extinct volcanoes, rocks? and masses of stone, are almost innumerable

But there are no signs of habitations such as ours, no vestige of architectural remains, to show that the moon is or ever was inhabited
by a race of mortals similar to ourselves. N_{0} by a race of mortals similar to ourselves. N_{0}
water is visible, no sea, no river; all seem desolate.

The tratang the Track
or seve pose of preventing Camden, N.J., for the pur cars pass. Workmen are still employed ex tending the work.

No Coai on Lake Superior
Charles Whittiesey, an eminent geologist,频erts, in a communication to the Lake Superor Journal, thatfrom the geological formacoal found rocks, there is not, and cannot b coal found on Lake Superior.

PATENT CHURN AND BUTTER WORKER.

FIG. 2.

The annexed engravings are views of a churn for which a patent was granted on the 5th of October (1852) to Brown and Bigelow, in the name of Henry K. W. Welch, assignee. Figure 1 represents the churn and butter worker with the tub in an upright position for churning the cream
A is a trame work of any desirable material B B are two standards or supporters bolted or serewed firmly to the frame, A; C is a tub, slightly conical in shape, containing the fans or beaters, and so hung to the tops of the standards, B, that it may be easily swung into the position represented in figure tub.
; D D is a diametrical bar, across the open end of the tub and supporting the fans or beaters and the gear; E is a box with inside gear resting upon the bar D D; F is a crank G is a bale or fork which secures the tub in the different positions represented above, by means of pins in the trame work; H is a pin o which is attached the slide securing the covers.
Figure 2 represents the churn and butter worker with the tub in a horizontal position for working the butter
ABCDEF and G, same as in figure 1 ; K is a slide passing under the cross bar, $\mathrm{D} D$ and securing the covers; I is one part of the cover-the other part beingsimilar to it with the exception of the aperture; L L are the fans or beaters revolving in opposite direc-

Singular Properties of the Digit 9. The figure 9 , multiplied by itself, or by one of the other digits, always gives a number whose two digits, when added together, giv for the sum. The digits composing the sum f the series of nine digits (that is 45), added together, give 9. The sum of all the products of 9 , multiplied by the series of digits (that is, 405) and divided by 9 , gives for a quotient 45 , and the digits forming the dividend or quotient, added together give 9. If a ow of any digits be multiplied, either by or by any one of the products of 9 multiplied by one of the digits of the series, such as by $18,27,36,45,54,63,72$, or 81 , the sum of the digits of the product will be divisible by 9. If these nine digits of the series are multiplied in the following order: $1,2,3,4$, $5,6,7,8,9$ by 9 , or one of the other products mentioned above, the product obtained will contain only similar digits except at the ens, where there will be a 0 ; that is to say if the series is multiplied by 9 , there will be ll ones, if by 18 , all twos, if by 27 , all threes, nd so on bexcer all twos, if by 27 , all threes,
tions, one within the other, and meeting at different points in the successive revolutions; P is a small aperture tor the escape of the butter-milk and watery substances at ter bringing the tub into a horizontal position and while working the butter; at each end of the cross bar, D D, is a thumb-screw, by means of whieh the bar is firmly secured to each side of the tub. These screws can be instantly removed and the bar with the fans and gearing attached taken out-leaving the tub entirely open with nothing to obstruct or hinder
It is obvious that the fans or beaters, from heir configuration and from their revolving in opposite directions, must agitate the cream and bring every portion of it into contact with the atmospheric air, more effectually than can be done by any other process. Consequently he operation of churning is rendered much shorter and easier.
The churning is so thoroughly done that very particle of butter is extracted and not a drop of the cream is lost.
After the butter has come, place any convenient receptacle under the frame, and having removed the upper part of the cover, gently swing the tub into the position represented in figure 2-in which position all the buttermilk and liquid substances will drain off the aperture, P. By this arrange-
be always 0 ; this 0 , coming always under the digit of the multiplicand that destroys the unitormity of the digits of the product. But if the 8 in the multiplicand is taken out, the 0 will likewise disappear from the product, in which there will be found only ones, two and threes, \&c., according to the multiplier made use of.

Grant's Light for Lighthouses.
We have seen it stated that, for many weeks ast, a series of experiments have been maing, resulting in perfect success, of Grant's system of lighthouses, and a report in its favor is to be made to the next Congress by the aval officers by whom the experiments have been condncted. The plan is to make use of he Drummond light—the strongest artificial light known-which can be seen distinctly for many miles through a thick fog. The cost of he machinery will be about $\$ 1,000$, wherea "Fresnel" light costs $\$ 16,000$. But the question arises, "can it be maintained as cheaply?" We believe it cannot, and will await patiently for the next Report of the Lighthouse Board for positive information.
ment there is a great saving of trouble and labor in lifting and pouring off the butter-milk Atter draining off the butter-milk, swing the tub back to its upright position, sprinkle in the requisite amount of salt, and having replaced the upper part of the cover, again se care the tub in a horizontal position. Then turn the crank as in churning, and in three minutes'time the whole mass of butter will be more thoroughly and beautifully kneaded rolled and worked, than can possibly be done by hand in any length of time-and the salt will be thoroughly and equally diffused through the entire mass.
By the aid of this churn and butter worker single woman can easily do all the churning and butter making of a very large dairy, and that too without touching the butter with her hands. A few minutes after putting the cream into the churn, you can take out the butter all ready for the table or the marketwithout a particle of butter-milk or other liuid substance in it, compact and firm, and not liable to become rancid.
This churn and butter worker took the first premium at the late annual Hartford County Fair.
State, county, and town rights for sale, address A. H. Welch, Harttord, Conn., agent for assignee, to whom communications should be addressed for information about such matters.
Patent Cases. his the 26 th ult., in the U.S. Circuit Court, this city, for a Bell Telegraph-E. Crehore, t al., against H. Johnson, for infringment of Jackson's Patent." A verdict was rendered or the plaintiff with 6 cents cost; the point of infringment was a spring for setting the ma chine before using. Mr. Russell, we believe, is the oldest inventor of Bell Telegraphs in this city. His first patent expired some years ago.
Turning.-Plaintiff, W. Hale ; defendant A. E. Brooks.-This was an action brought gainst defendant for an infringement of a pa ent to W. Hale and Allen Goodman, of Dana, Mass., in July, 1845. for making pianoforte legs. The jury gave a verdict of $2,355,77$-tor the use of one machine-a prety heavy verdict. In both cases these patents ere sustained. Judge Betts was on the bench, and gave very able charges.
The shock of an earthquake was felt beween 4 and 5 o'clock A. M., on Tuesday, Nov. 9, throughout England and Ireland. No dam. 9 , throug

