Scientific ${ }^{\text {Ancricmu }}$

Brientificamericm

NEW-YORK, NOVEMBER 27, 1852.

Influence of Great Men

There is no subject, apparently, upon which we differ so much from the opinions express ed by authors and editors in general, as to what constitutes "a great man." When mighty statesmen and triumphant warriors belonging to any nation fall before the scythe of death, the whole land puts on sackcloth of death, the whole land puts on sackcloth,
and goes into mourning. We have seen two and goes into mourning. We have seen two of the world; we allude to the death of Webster among ourselves, and that of Wellington in England. Intellects cannot be measured by rule and square, nor can great ness be measured by public requiems and mo numents. We can only form an opinion as to the greatness of men by what they have done, " by their works ye shall know them." We hear men frequently boast of the genius of Hannibal, Cæsar, Napoleon and Wellington; of the intellect of Burke Pitt, Hamilton and Webster; but neither warriors nor orators stand in the front rank o intellect, they must take a lower place than many men of science, whose greatness we seldom hear a word about. What intellec among warriors and statesmen can take rank with that of Galileo, Kepler, Leibnitz, Bacon Newton, Euler, Wollaston, La Place, Black, Lavoisier, Davy, Watt, Boyle, Franklin, \&c We might mention others, but these are enough for our purpose. The works which these men have accomplished, affect all men ; they meet us on the right hand and on the left every day and every night, and they will do so to others through all coming ages. The victories of Hannibal were all shattered and blasted by the single defeat of Zama, and the whole of Napoleon's conquests sunk for ever on the single field of Waterloo. It is true that the speeches and writings of statesmen and orators do not perish so suddenly ; they go down and are read by succeeding generations but at the same time new circumstances arise which lead men who were considered wise in one generation to be looked upon by another as doubtful preceptors; or as false lights for a new age. It is different with those profound thinkers and discoverers in the scientific world; they are the intellectual Titans.When we hear people speak of a great man, we ask what he has done, and we try his works to see if they are the genuine coin. The rolling stars by night continually remind us of Galileo, Kepler, Herschel, and La Place. There is not an apple falls to the ground but reminds us of the great Newton. The lightning fleeting from cloud to cloud, reminds us of our own Franklin, who brought it down from the skies as the hunter brings down the eagle in his flight. The lives of hundreds are saved every year by Davy's Safety Lamp. saved every year by Davy's Safety Lamp.
The invention of Watt has multiplied the power of man over inanimate matter more power of man over inanimate matter more
than a million fold; and the genius of Fulton than a million fold; and the genius of Fulton
has made a turnpike of the Atlantic. We has made a turnpike of the Atlantic. We
would not perhaps have written upon this subject at present, but recently we have seen so much in our daily papers about great men and great intellects, and so much has been said about them by orators and others; and comparisons between this one and that one having been made, and seeing nothing at all said about men of science and inventors, whose reasonings often took sublimer flights than the imagination of Shakespeare, we than the imagination of Shakespeare, we
have said this much and could say a great have said this much and could say a great
dealmore to tortify our position, that warriors and statesmen must take a lower rank for genius and intellect than those men whose names we have mentioned. There are also others, of whom we have not room to speak, but assuredly our men of science, discoverers, and inventors, are the greatones (speaking of inand inventors, are the greatones (speaking of in-
tellect,) of the earth. Time would fail us tellect,) of the earth. Time would fail us
to tell how Kepler discovered the laws to tell how Kepler discovered the laws
which govern the planets in their orbits; which govern the planets in their orbits;
how Newton arranged the whole universe how Newton arranged the whole universe
before his mind, and discovered the force before his mind, and discovered the force
which guides a planet in its course, a sparrow in its flight, and the great tides of the sea which refresh and tructify our shores; of Wullasto: making metal threads finer than
out of stones by galvanism; of Stephenson
driving his iron horse over mountain and moor; of Daguerre using the sun-beam tor a pencil; and of Morse the lightring for his
pen. Ignorant and circumscribed in intellect, pen. Ignorant and circumscribed in intellect,
must that man be, who, in speaking of great must that man be, who, in speaking of great
men, fails to perceive and mention the claims of philosophers and men of science.

Coating Iron with Copper.

On the 21 st of last September, a patent was granted to Theodore G. Bucklin, of Troy, N. Y., for a new and improved mode of coating ron with copper, which promises to be an invention of no small importance to the arts. It has long been a desideratum to coat iron with some other and less oxidizable metal, in order to render it more enduring in exposed ituations. It is more essential to have sheet and plate-iron than any cther kind, covered with copper. For example, sheet-iron covered with copper, would be cheaper than tinned iron for roots of buildings, \&c.., and plate-iron, if covered with copper, would be excellent for making steam boilers so as to prevent incrustations, \&c. Cheapness is an important item in the process. If the process is expensive, then it can be of no general benefit, for sive, then it can be of no general benefit, for
pure copper would be preferable. It cheap it pure copper would be preferable. It cheap
is a most important discovery. A method of covering iron with brass, copper, \&c., has long been known, but to cover it and make the copper unite with the iron, like tinned iron, has hitherto been considered problematical. The invention of Mr. Bucklin promises to fulfill every condition desired in making coppered iron-cast, malleable, and wrought iron can b
The process consists in first removing the oxide from the iron to be coated, then cover ing it with a medium metal which has a grea affinity for the iron, and afterwards dipping the iron so prepared into molten copper, which by the galvanic action of the medium metal, makes the copper intimately combine with the iron, and form a complete coating. The oxide is removed from iron by means of diluted sulphuric acid, in which the castings or sheets are rubbed with sand; after this they are washed, and dipped into a solution of the muriate of ammonia dissolved in a suitable vessel, when they are ready for the next process. This consists in dipping the sheets or plates into molten zinc, immediately after they are litted out of the salammoniac solution The surface of the molten zinc should be covered with dry salammoniac, to prevent the evaporization of the metal. The iron is soon covered with a coating of zinc, and forms what is termed galvanized iron. At hand, the operator has a crucible or pot containing melted copper covered with some incombustible substance as a wiper, and he at once dips the zinced iron, into this, in which it is kept until it ceases to siss, when it is taken out and found to be covered with a complete and durable coating of copper, By dipping the iron thus coppered, into the solution of salammoniac, then into the zinc, and the copper-repeating the process-coat upon coat of the copper will be obtained, until it acquires any degree of thickness. The black oxide is prevented from forming on the copper by dipping it afterwards in the salammoniac solution, and then washing it in pure water. This process is entirely different from that of Mr. Pomeroy, for which a patent was granted a few years ago, and which was published on page 69, Vol. 6, Scientific American. We have seen samples of iron coated by Mr. Bucklin's process, whicb were very beautiful and well covered. Unless the melted copper was covered witha non-combustible substance, the plates would come out in a very rough state, but the covering acts as a wiper, and the coppered plates come out smooth, and well coated. Brass, or any of the copper alloys, can be made to coat the iron, in the same manner as the copper. We hope this new process will be the means of extending the use of sheet-iron, so as to save considerable to the country, that is now paid out for tinned sheets.

Models: Models : Models :

We require in all cases, when models are sent to this office, that the freight charges should be pre-paid or otherwise provided for. The name and residence of the inventor
should also be attached to the model, as mary
times we are unable to determine the proper
person to address. These regulations must be strictly complied with, otherwise we cannot be responsible for any errors that are otherwise liable to occur.

False Philosophy.

Macrocosm or the Universe Without -This is the title of a new book by William Fishbough, a candidate for philosophic fame. As it is a work which treats of subjects conected with our legitimate pursuits, and eaches a philosophy at variance with ours t is just and proper that we should at least point out some of its errors. The author is not a metaphysician, nor is he skilled in scientific ore; the brilliant passages in the book bea the impress of Prof. Nichol's genius, and there is not a single new scientific fact recorded in ts pages. There is, however, a cool thread of egotism running through the whole of it, xhibite-complacent," I know it all" spirit jects that would appall Newton to approach and about which Herschel and Humboldt would confess themselves ignorant, he rushes t with an audacity that is really exhilarating. Knotty points that baffle the most eminent men of science, he unravels as easily as flying a kite, and with a few flourishes like established.
The author teaches the development hypothesis of animal life, and plainly states that "in the lowest of the fossiliferous rocks the principal animal remains are Radiata, which orm the connecting link with the vegetable kingdom," and he presumes "that more minute and simple species preceded these."-
The development hypothesis-for it is not a The development hypothesis-for it is not a
theory-assumes that animal life commenced at a point, and gradually in a multitude of ages went on developing itself until man arose out of a mite. We believe that some of the developists hold to it that the dolphin was a very near predecessor of man. The easoning of some advocates of this hypothesis, is indeed no better than what might be
expected of a dolphin or such like fish, and they are therefore welcome to a system which intimately relates to themselves, but t is one which Hugh Miller has smashed to pieces, and which Prof. Agassiz, the eminent philosopher in a recent lecture delivered in
his city gave his testimony against. Here is what he said:-
"The extinct animals found in the loweststrata, it has been imagined by philosophers, were the first created, but this supposition has been overturned by modern science, which discloses the fact that the lowest strata contain radiata, molusca, articulata, and vertibra a. The plan which pervades the animal kingdom at the present day, is the same which was displayed at the first introduction of animals upon this earth. The same thought which planned the arrangement of animals now living and which has assigned to their different races their zespective stations, is the same which has laid them from the beginning. Everywhere we see one active mind in na ture from the beginning as now, from all time and all being, and have evidence of the Creator in space, in time, and in every individual, as well as the whole animal creation."
Thus speaks a real practical man of science; how lofty and profound in comparison with the superficial development hypothesist. Our macrocosm author assumes the professorship of Doctor of the Nebular Hypothesis, which is quite in harmony with his materialist iews, and development ideas.
The nebular hypothesis embraces the doctrine that the whole visible universe was once a mass of subtile gaseous matter, and that out of this, by rotation and cooling, the worlds made themselves. The author of this
hypothesis is La Place, and his views have been embraced by many eminent philosophers, and were inculcated by Prof. Guyot, in his lectures in this city last winter, and although some portions of the heavens have lately been resolved into stars by superior telescopes, which stars were once held to be nebule, still many men are so hard or thick headed, that bulous notions.
The nebular hypothesis supposes that at
the sun and all the planets and satelites in our
system wos in a state of attenuated gas system wos in a state of attenuated gas
(fiery vapor,) and all rotated around the centre-a huge mass of rolling gas-the sun being the axis, and that in a multitude of ages, by certain parts cooling and shrinking, the planets were first formed into rings, then broke up into spheres, and finally assumed their present forms and positions. There are ight objections to this hypothesis, which, if removed, would leave us little to say against it.
1st. There is no evidence that the matter f this world was originally in a state of gas. 2nd. By the known laws of chemistry, all matter cannot be reduced to a state of gas
3rd. By the known laws of chemistry,
isolated fiery mass of gas cannot have but a momentary existence, and by analogy never

4th. [Mr. Fishbough says that the mass of gas received rotation by virtue of gravitation.] Gravitation cannot produce rotary motion. By the laws of mechanical philosophy, a body must be acted upon by two forces to give it a rotary motion.
5th. The nebular hypothesis does not account for our planets having two motions, ne on their axes and another around the sun. 6th. If the whole mass of matter now forming the solar system, once rotated along with the sun as its axis, then the outermost planet should revolve round the sun in 25 days 7 hours, 48 minutes-this being the time the sun revolves on its axis (not in 27 days as Mr. Fishbough has it.) Instead of doing this, Saturn takes $29 \frac{1}{2}$ years to revolve round the sun.
7th. If all the matter composing our system rotated together around the sun as an axis, then all of it would still rotate in the same direction, but instead of this being the case, the satelites of the planet Uranus reoolve in a contrary direction to the other planets, and not in the same plane. Well might Prot. Nichol say in reference to this fact, "a comet would be very acceptable here."
8th. The present positions, the forms, and motions of the planets cannot be accounted for by gravity nor gas. By none of the known laws of chemistry could the matter of which this earth is composed, ever have been in a state of gas. If it ever was, different chemical laws must have been in force which now have no existence, and to prove a hypothesis by a hypothesis as Mr. Fishbough does, is like exterminating problems by the following rule $-0-0=1$ an exceedingly con. venient system of mathematics for dreamers Prof. Nichol asserted while in this city, that " no calculation or deduction can ever enable the human race to trace back our system to its origin," yet in face of this Mr. Fishbough does so with the greatest ease, and lays down his deductions with the utmost sang froid as established facts.
To show how he understands mechanical philosophy, let us just quote another paragraph from his work :-
"The kingdom of motion and forms, therefore, have ever been and still are (and we may confidently believe ever will be) making farther and farther encroachments upon the realms of chaos and inertia, and whatever is conquered by the former can never be fully reconquered by the latter, and this because the former
Not to speak of the grammatical richness of this sentence, here we have motion and forms called a kingdom, aid a conquering power, and inertia and chaos called realms having no motion; the man takes states and condition of matter for its properties, as all men who are ignorant of mechanical philosophy do. Inertia is simply the passive mechanical property of matter, whereby it has no inherent power to change its condition; it belongs to a body in motion as well as a body at rest, it is as much positive as negative. Men talk about chaos with great freedom ; who knows anything about it? Inertia belongs to all bodies in motion, and which have form; matter in every state, in every place, and at all times, has been, and is endowed with the property of inertia.
We might easily fill a page in pointing out rroneous views put forth in this book, but
ot Davy resolving metal

Scientific, Amexican

Reported Offcially for the Scientific American LIST OF PATENT CLAIMS
 Expaspina Brrs-By Charles L. Barnes, of New

 equiralents; so that the lip on the movable part
shail
shoome the outter when bor
size
 rost, by which means 1 am ambe to form the lipg oof
the proper shape for diferent isized holes, without
the changing the cutters, as deseribed.

 the slide, by means of the inclined si
points, and the movement of the side.

 rollers, as described, in combination with the finger
or seaparators or the

 emplogment of the fulcrum bar, asdeseribe

 the equiralent theroof with
its appendages, as seat forth.

 lifting rods, cam and lever, and the other deriees
acting in cononetion with these for raisign and
lowering and oscillating the lifting rods-the whole
low operating a as deseribed.
Thirdy, the temples,

 a reci procating former
therew with, as set forth.

 vious to
set forth.

 a simple or compound
the purpose speciibed.

 When the ronliers are connected by
Whole is constructed as as deseribed.
 alum, and terra japonic
the purposes set forth.

 criension, and permititit to remaing stationary during
the reverse movement of the bed as as described. She reverse movement of the bed, ar desecribed.
Seondy, in combination witha horizontal 9 der moring in one odirection, witt alternate esest and
motion, the inking and tying apparatus as described
 Adolph Riohter, of New Pork city : I claim, deline.
ating antural and other objects, in a d diminished or
Aner

 Work, as deseribed also, the point ing of the sheet
wirlst being preparad for troeciving the frrs impres.
sion by an

 combination of the open tooggle and adjus
centric shaft or pin, which operate the bed.

 holding the card teeth, fo
and supporting sald teeth.

 die and upper edge of the saddle to the rope, whers
it it made fats without being wound round both
saddie and rope saddele and rope.
Second, the at
 for the purpose of pressing unon the papoul for ena
bling the operator to serve the rope with an degra

 arranged and operating in the
purposes herein fully set forth

Properties of Iron.

Mechanical Properties of Metals.—By Mr

 Fairbairn.After some preliminary observation, Mr . Fairbairn stated that having been requested by the British Association at their last meet-
ing to undertake an inquiry into the mechanical properties of cast-iron, as deducted from the repeated meltings, and feeling desi-
rous of ascertaining to what extent it was rous of ascertaining to what extent it was
impaired or deteriorated arrangements were impaired or deteriorated arrangements were
made for conducting a series of experiments calculated satisfactorily to determine this question, and to supply such data and such information as will enable the engineer and iron-founder to ascertain with greater certainty how far these re-castings can be carried with safety, or till such time as the maximum
of strength is obtained, and such other properties as appear to affect the uses of this valuable and important material. Mr. Fairbairn further stated, in connection with this subject, that it was his intention to investigate another important process, which, to a considerable extent, affects the stability of some of the most importantiron constructions hesive properties of the material, and the more complete and effective process of crystalization. On these points it is well known that a rapid rate of cooling is invariably at-
tended with risk, that an imperfect crystaltended with risk, that an imperfect crystalline structure is obtained, and that irregular ht they are frequently the forerunne rso disruption, as well as exceedingly deceptive as regards appearances, or the dangerous consequences which invariably follow in
rapid cooling and unequal contraction.
On the Form of Iron for Malleable Beam or Girders.-By Mr. T. M. Gladstone. It is, said Mr. Gladstone, on the application of wrought-iron beams or girders, that I propose to make some remarks by contrasting their powers and properties with those of
cast-iron; to show what form of iron I con-cast-iron; to show what form of iron I con
ceive best adapted for such use, and to state
the capabilities of iron-works to produce the
same beyond previous efforts, so as to meet same beyond previous effrorts, so as to meet
the increased requirements of the times. It is found, that by converting iron from a cas into a malleable state, the adhesion of the fibres of the metal under tension, becomes
increased from 7 to 27 , and indeed much beyond that when the best quality of material is manutactured. At the same time it is stated that the compressive strength is some what reduced. In this latter assumption do not altogether concur from a permanent feature in the experiments not being sufficiently taken into account-namely, that in ex perimenting with wrought-iron, of a given
extension, from pressure, it is necessary, be. extension, from pressure, it is necessary, be.
fore you obtain even a medium value of the resistance, a mrodicum of deflection must take place to bring into play each of the fibres ; consequently, not like as in a rigid cast beam, where the full action of compression acts at once, some allowance must be in calculating the compressive forces. Assuming generally that the increased strength or tensive power of wrought, compared with cold area of the bottom web of the iron beam, and nearly reduces to one-half the required sectional area throughout, yet retaining an equal strength, for every purpose. In many cases this increase of strength, enabling to
reduce the weight, will fully compensate for the difference in price, so that up to this point the market and effective value of both may be said to be equal. The wrought iron beam, however, possesses this material advantage, and that is, it will always give good warning before the point of danger
is reached, and this, mainly from its vastly increased deflective power-indeed, before its maximum is reached a great deflection
can safely take place ; therefore, both for life can safely take place; therefore, both for
and property, its advantage is most conspicuous. With regard to the best form for carrying the greatest weights with the least metal, I havecome tothe conclusion, from actual experiment on a large scale, that the
double T section is the best, provided the flanges are sufficient to prevent lateral action from the load. At the Belfast iron
works, the members can see iron of the section shown in the bars, of twenty-six
feet long, and weighing nearly half a ton, so that it will be seen that the mills are now constructed so as to roll iron of almost any dimensions which may be requir ed, and such bars, from the breadth of the flan ges, have never before been attempted in the three kingdoms. When I had the honor,
four years ago, to read a paper at the society four years ago, to read a paper at the society
of Arts, on the means of constructing bridges without any centreing of such proportions of iron, no iron-maker would attempt to produce such proportion of material, while now I have in making them much larger if no hesitation doubt, for warehouses, mills, public buildings, and bridges its value will now become exclusively applied and appreciated. As these bars are rolled solid throughout, on compari son I have found they will bear nearly one-
third more than any made beam of equal sectional area-that 1s, with a beam of which the centre-rib is of plate iron, and the flanges of angle iron, and riveted thereto, and so distributed as to make the double \mathbf{T} form. This is easily accounted for, as you necessarily weaken the whole by its being requisite to introduce riveting, while a due and equal resistance is offered from all parts by the solid-ly-rolled bar.
[The above are abstracts from papers read betore the recent meeting of the British Association for the Advancement of Science. A great many excellent papers on real practical and scientific subjects, were read before the
last meeting. Of course we could not publish them all, but as we deem it of interest and profit to our readers, without any continuance sent other condensed abstracts like the above.

Cheap Fuel.

A noted agriculturist, Mr. Bergen, says that fuel of an excellent quality can be grown quicker, easier, and cheaper from pach-stones,
than any other mode within his knowledge. than any other mode within his knowledge.
From this source he thinks the settlers upon
e Western prairies might furnish themselves, within three or four years, with a constant supnlv.

Photegraphic Picture

Photography is but in its infancy in our country, and although it is a far more important art, and is as old as the daguerreotype still it is but little practised in America. The difference between it and the daguerreotype, consists simply in the former embracing sun drawn pictures on paper, while the latter reates to sun-drawn pictures on metal plates. The Talbotype" is also a name given to un-drawn pictures on paper, after Fox Tal t, the discoverer
When we consider that with a number of heets of prepared paper, an artist may go orth into the woods and wilds, and with his camera copy the gigantic pine, the leaping waterfall, the snow capped mountain peak, or the embowered cottage, we may well conclude that the Talbotype is an art which is yet destined to achieve wonderful results.et us explain how the paper is prepared and he process conducted.
White paper of a good quality is selected which is thoroughly impregnated with white wax by placing it upon a hot clean tin plate and covering it with the wax in a melted tate. All the superfluous wax is removed by pressing the waxed paper between sheets of blotting paper, and pressing upon the top with a hot flat iron, until the waxed paper appears to be evenly saturated. Some rice water is then prepared by intusing about 8 ounces of good rice in 5 pints of water.When the glutinous portion of the rice is dissolved, the clear is poured off, and one ounce and 140 grains of the sugar of milk, one-half ounce of the iodide of potassium, $12 \frac{1}{2}$ grains of the cyanide of potassium, and 12 grains of the fuoride of potassium are dissolved in it.This solution is then to be filtered through clear white filtering paper, and the waxed paper allowed to soak in it for half an hour, af er which it is removed and dried carefully with a moderate heat in a clean place (not in sunshine.) With these ingredients in the pro portions mentioned, it is best to make up a quantity of this liquid, and place a number of sheets in it at once, taking care to have them
loose and pertectly covered. When dry, these sheets can be kept in a moderately cool place, wrapped up, for any length of time.
To render them sensitive, a solution is made up as follows:-One-half ounce of distilled water, into which are dissolved 150 grains of the nitrate of silver to which are added 186 grains of acetic acid. (Any quantity of liquid may be made up according to the proportions given, so as to prepare a number of sheets at one time. The quantities given are only for small experiments). In this solution the sheets are immersed for a short time, care being taken to remove all air bubbles from the surface of the paper; which, when it is taken out, must be dried in the dark, and may be kept afterwards (covered up from light) two or three days.
w ready for the camera ob presin which it is placed to take the im pression of any object desired, like a daguer rean plate. The time required to take an
impression is from one up to thirty minutes, s experience determines, which time depends on the character of the light and the object, the picture of which is to be taken. After the paper is taken out of the camera, it is placed in a bath of two pints or distilled watea, and 64 grains of gallic acid; this brings out the picture on the paper, which, when fully developed, is fixed by soaking it for some time in a quart of distilled water, into which have been dissolved two ounces of the hyposulphite of soda. Atter having been taken out of this, itis well washed in clean water and dried, when it forms a well-defined negative picture, from which any number of positive impressions may be taken.
The best light to work with for obtaining good pictures on the prepared paper is under a clear sky, when the sun is shining, and when the light falls chiefly on the darker shades of the object, or scens, leaving such a are of light color under the influence of dif-
fused light only. It requires practice to judge by the eye how to manage the time in the camera, according to the kind of light, and

