NTBEM M M 5

A New kind of Telegraph Lines
In the East Indies a line of telegraph has been laid down, ai:d is now in working order between Calcutta and Kedgeree, a distance of 72 miles. This has been done by a Dr. 0 . Shaughnessy, an Irish gentleman. It is now proposed by the Governor-General of India, Lord Dalhousie, to unite all the important places in the British possessions in that country by electric cords. This will embrace lines of 8,800 miles long. The line which has been constructed differs entirely from any of our lines in America. The conductor (a wire with us,) is laid part of the way under ground, in a cement of melted rosin and sand, and is a five-eighth of an inch iron rod. Part of the way it is carried over ground on bamboo poles, fifteen feet higb, coated with coal, tar, and pitch, and strengthened at various distances by posts of saul wood, teak, and iron wood from America. The bamboo posts are found to resist storms which have uprooted trees the growth of centuries. Though the bamboo soon decays, yet its amazing cheapness makes the use of it more economical than that of more durable and more costly materials. The branch road from Bishlopore to Moyapore passes through a swamp; the country is little less than a lake for five months; the conductor runs on foot paths between the island villages, and for some miles crosses rice swamps, creeks and jeels on which no road or embankment exists. The most diffcult and objectionable line was selected to test the practicability of carrying the conductors through swampy ground, and it has been perfectly succcessful. The Huldee river crosses the Kedgeree line half-way and varies in breadth from 4,200 to 5,800 feet. A gutta percha wire, secured in the angles of a chain cable, is laid across and under this river, and this chain is found to afford perfect protection from the grapnells of the heavy native boats which are constantly passing up and down.
The advantages of the iron rod as a substitute for the wire, are stated to be complete immunity from gusts of wind, or ordinary mechanical violence; if accidentally thrown down, they are not injured, though passengers, bullocks, buffaloes, and elephants may trample on them: they are not easily broken or bent; owing to the mass of metal, they give so free a passage to the electric currents, that no insulation is necessary; they are attached from bamboo to bamboo without any protec
tion, and they work without interruption tion, and they work without interruption
through deluges of rain; the thickness of the wire allows of their being placed on the post, without any occasion for the straining and winding apparatus, whereas the tension of wires exposes them to fracture, occasions expense in construction, and much difficulty in repairs; the thick rods also admit of rusting to take place, without danger, to an extent which would be fatal to a wire. On several occasions, one village forge, carried by two coolies, has been found sufficient for welding a mile of rods in a working day. The rods,
moreover, are not likely to be injured by crows or monkeys. Swarms of kites and crows perch on the lines through the swamps but they cause no harm; the correspondence flies through their claws without interruption, though on one occasion a flash of lightning struck the wet rod, and killed some scores of them. The importance of this discovery of the superiority of rods over wire will be fully appreciated in a country like India, where the line must often run through a howling wilderness, tenanted by savage beasts, or more savage men. The lines must therefore use of thick rods.

A Fish Nursery
Dr. Samuel J. Stratford, of Toronto, Canada, has asked Nova Scotia for a salt-water lake. He desires to make a fish nursery for salmon, lobsters, oysters, \&c. The French have lately been turning their attention to
schemes of the kind, and the doctor thinks he could carry out successfully at Lake Bras d'Or, in Cape Breton, a plan which, he says, would prevent the extirpation which threat-
poses to erect defences at Barra Strait, which
would prevent the escape of fish, and feed and would prevent the escape of fish, and feed and
protect them in the spacious enclosure. He would do this in such a way as that navigation should not be hindered. He has a method of preserving his fish alive, and so exporting them, in salt water, to foreign coun tries. And he expresses his confidence that he could not only supply the markets of Can ada and the United States, but also those of England and the continent of Europe. Thi is a matter gastronomically interesting to more than one hemisphere; and we hope the Nova Scotian Legislature will give us all a chance for a little good, cheap salmon, to sav nothing of the shell fish.

Modern Cyclopean Wall
A recent number of the "Algemeine Zeitung," contains an interesting account of a visit which the writer had made to inspect the progress of bulding a wall in the manner called Cyclopean, at Dilsternbrook, near Kiel, in Schleswig-Holstein. He considers the ef fect of the work and the style of execution far superior to any of the numerous re-
mains called by the same name, which he has seen in Italy, and goes so far as to give it the preference over any other kind of walls, so far as the plain vertical surface of the material apart from ornamental accessories, is concerned. He thinks that the polygonal stones, exerting their pressure in all directions, must insure stronger work than the squared stones however closely jointed, which only act in the direction of gravity. Indeed, tne innume rable number of many sided and multangular stones of all sizes seem so run together into one compact mass, of which neither time nor age will get the better. Neither mortar nor any other means of binding the stones together is employed; but the greatest care is taken in fitting the granite blocks one into the other, the vacant spaces in the wall as it is carried up being accurately taken off with a lead tape, (bleistanger) forced with a hammer into all the angles of the openings, and then applied to the flat hewn fare ot the block best suited, and next to be brought to its proper shape by the workman. From the workmen he learned that the directions given them by the architect were, "Five-sided and sixsided blocks, seldom four-sided; straight lines, joint upon angle and angle upon joint. according to the lead tape, and only inclined junctions between the blocks were found to be in every graduation between the perpendicular and the horizontal, without coinciding with either of them. In this obliquity of the joints the author detected the arch principle of con struction as appliet to the work, and the workmen pointed out to him that each stone either presssed or supported, with every one of its sides, however numerous. Herr Mahnke was the name of the builder, who had said that the cost of the work was less than that of a square stone wall; that it was much stronger, so that he should have used it in se veral larger buildings if he had been acquaint with it sooner ; moreover, that this kind of building was to be preferred, because every
stone, large or small, can be used up in it Generally, the writer holds this polygonal or Cyclopean kind of building to be especially applicable in, first, hydraulic works, as it offers nowhere a continuous joint to the water; second, in fortifications; third, for railways in substruction and deep coverings, and in the cellar story and even in the next story of arge buildings and palaces. In these mortar would be used, not as a means of connecting the stone, but only as pointing to the joints, so that the immediate contact of the stone should not be interrupted. In conclusion, the writer building according to determined and clearly defined principles and rules, as altogether practical wher

Rain

 aps from one twenty-fifth to one-fourth n inch in diameter. In parting from the clouds, they precipitate their descent till the increasing resistance, opposed by the air becomes equal to their weight, when they continue to fall with a uniform velocity which is therefore, in a certain ratio to thepour down fars, in which the drops are large drop of the twenty-fifth part of an inch, in falling through the air would, when it had arrived at its uniform velocity, only acquire a unitorm celerity of eleven feet and a hal per second; while one-fourth of an inch would acquire a velocity of thirty-three feet and a-half.

Discoveries in Persia.

The commissioners at present engaged in running the boundary line between Turkey nd Persia have, in the prosecution of thei work come upon the remains of the ancient palace Shushan, mentioned in the sacred books of Esther and Daniel, together with the tomb of Daniel, the Prophet. The locality answers to the received tradition of its position, ard the internal evidence, arising from its correspondence with the description of the palace recorded in the sacred history, amoun turn to Esther, chap. i. v., 6, there he will read of a "pavement of red, and blue, and read of a "pavement of red, and blue, and
white, and black marble in that palace."That pavement still exists, corresponding to the description given in sacred history, and in the marble columns, dilapidated ruins, the sculpture and the remaining marks of greatness and glory that are scattered around, the Commissioners read the exact truth of the record made by the sacred penman.
Not far from the palace stands a tomb; on is sculptured the figure of a man bound hand ing upon him to devour him. No history ing upon him to devour him. No history
could speak more graphically the story of could speak more graphically the story of
Daniel in the Lion's Den. The Commission Daniel in the Lion's Den. The Commission-
ers have with them an able corps of engineers and scientific men, and most interesting dis coveries may be expected. The Persian ar row-heads are found upon the palace and the tomb. Glass bottles, elegant as those placed upon the toilet table of the ladies of our day, ave been discovered, with other indications art and refinement, which bear out th statements of the Bible. Thus, twenty-five
hundred years atter the historians of Esther and Daniel made their records, their histories are verified by the peaceful movements of th nations of our day.

Agriculture in California.

On the 7 th of last October, a large agricul tural tair was held at Sacramento, which was quite an affair. An address was on that occasion delivered by Dr. John F. Morse, in which he made the following statements relative to farms of different gentlemen. He said that, on the garden of Mr. Bennett, num bering 30 acres, were raised 60 bushels o grain per acre. He employs 10 men, and realizes $\$ 595$ weekly. The garden of Messrs. 60 a day. 60 a day.
Mr. Southwick, on his farm, keeps 125 ows, at a cost of $\$ 600$ per month. He sells 176 gallons ot milk daily, at $\$ 1$ per gallon. He realizes $\$ 63,000$ annually from his dairy alone. General Hutchinson, on 80 acres, realized 50 bushels per acre, which weighed 52 pounds to the bushel, and was worth $\$ 91,584$ William H. Davis, on a farm of 600 acres, keeps 2,000 head of stock. J. M. Horn, of San Rose Valley, has a farm of 200 acres, which produces 80 bushels of barley to the acre; also, 150 acres of potatoes, producing
300 bushels per acre. They are worth $\$ 4$ per bushel ; besides large crops of wheat and oats. Mr. E. S. Beard, of the same Valley, has
540 acres in barley, wheat and oats, yielding 40 acres in barley, wheat and oats, yielding 260 acres of potatoes, yielding 250 bushels per acre. Aggregate amount in value, $\$ 260,000$. At a late meeting of the Farmers' Club in this city (N. Y.,) Mr. Shelton, of California, stated that Indian corn did not generally flourish in California. It grew to an enormous height with small crops, from 20 to 25 feet high, at least. The climate is exceedingly changeable. Mr. S. said that he saw some Canada corn four to six feet high, the ears being near the ground. The westerly winds rush in at San Francisco, and rarify the hot air in the valley where stands the city. The branches of trees are all bent to the eastward. Various trees are so injured by wind and sand that they become stunted;and grow up in a
gins, clover commences to grow, and grows very bushy and tender. The Indian Squaw gather baskets full, every day, making a kind of beverage of it. The hills and valleys are covered with wild oats and clover. The cattle and stock get very fat on these oats and clover. The clover comprises some firteen or wenty varieties of every hue and color. The grasses are very fine; the native timothy ields from two to five tons per acre. It is ten feet high. The pin grass is of a very cuious growth. An acid clover grows very bundant in the valleys; the natives make a emonade of it; it is very healthy. He gathred one bushel of sour clover weighing 3 lbs . The Rev. Mr. Filch, of California, stated that vegetation began in November, and dried p in June. Drought continues till Novemper, and generally without dew. The people er, and generally without dew. The people commence cutting barley about the last of
May, and let it lay on the ground over two months, not raked un.
English Manufactories.
There were, in Yorkshire in 1850, accord ing to tables made up, 532 woollen factories for sinning only, with 629,838 spindles, and an ggregate power of steam and water combined, of 7,431 , furnishing employment to 20,53 persons, of which number 5,063 were females above 13 years of age, and 3,819 boys, 3 to 18 years-the balance being males bove that. Of the weaving and spinning esablishments not enumerated in the above, here were 180 , employing 295,611 spin des, 30,604 power looms, and 14,002 hands, ot whom 7,800 were females. Of other woolen factories besides these, there were 159, employing 6,128 persons, the number of spinles, etc., not being stated. These, however, do not include the worsted mills, which, trictly speaking, are woolen manufactories, nd are arranged under another head. The number of yards of cloth annually produced not named, nor are the wages of the hands tated; but it appears that there has been an ncrease since 1834 throughout the kingdom, of woolen and worsted factories, of 51 per ent., and that the hands have increased 116 er cent, while the increase in the consumpon of colonial and foreign wolols; which form less than one-half of the whole consumed, has been 64 per cent. From this state ment, necessarily much abridged, it will be seen that the manufacture is extensive in
England, and rapidly and steadily increasing.

The ordinary safety Lamp

nary spirit lamps are open to many jections, some of which have been obviated y a new safety spirit-lamp, invented by lexander J. Walker, of New York City who has taken measures to secure a patent The improvement consists in the employment fa movable circular plate, resting on a flange ound the inner neck of the lamp, and to which the wick tubes are fixed. This plate is connected with the cap or top of the lamp by means of a vertical rod, a spiral spring being wound round that part which is between the before-mentioned cap and plate. Now, when the top is unscrewed, this rod slides own and carries with it the wick tubes, by which the light is immediately extinguished. In like manner the rod, which is made to side freely through a circular opening in the entre of the plate when the top is screwed n, raises the wick tubes, while the beforementioned plate being pressed down by the pring, prevents any flow of liquid otherwise than by the proper manner.

Railroad Brake
Ledyard Colburn, of Birmingham, Conn. has taken measures to secure a patent for a new railroad brake. The invention consists of a wrought-iron shoe, which is suspended on either side of the wheel in the ordinary manner, and worked like the common brake. It can also be used in cases of extrème danger by the engineer pulling a leter, which springs the knuckle joints of the shoes, and causes them to fall on the rail unider the wheels, thus raising the latter slighty from the track and stopping them, as well as throw ing the friction and wear on the shoes.
The Albany and Susquehamnah Railrosd has been so far located as, to be ready for contract. Bids for its construction have been invited, which will be opened on the 1st of diameter of the drops; hence thunder and bush form. As soon as the rainy season be- ${ }^{\text {ind }} \begin{aligned} & \text { December. }\end{aligned}$

