## For the Soientiac Americai

Aurora Borealia.
The Aurora Borealis, or Northern Lights, have ever excited the speculation of philoso${ }^{7}$ hic minds; yet the wisest philosophers have been unable to explain its wonderful display, and bring it within the range of philosophic liw. We find in our atmosphere a strong un der current of cold air moving towards the equator; so strong indeed, as to form a stiff breeze, called trade wind; and necessarily there must be a corresponding upper current moving towards the poles. This upper current, when it leaves the torrid zone, is highly rarefied, $z$ nd does not meet with any very ra pid condensation, until it arrives within the indluence of the eternal frosts of the poles, or as high latitudes as $70^{\circ}$. Near this latitude the magnetic poles have been fixed; and around the earth, following this line of latitude, is trequently seen in the heavens a briltude, is frequently seen in the heavens a bril-
liant band of light, from which flashes np liant band of light, from which flashes np
beams and floods of light. forming the beautibeams and floods of light. forming the beauti-
ful and frequently brilliant display termed Northern Lights. This light is electrical light, produced by the evolutior of electricity consequent on the sudden condensation of the atmosphere. The beams of light which spring up through the sky, are currents of air highly charged with moisture, which, on coming within striking distance of the electrical band, are suddenly electrified.
It $h_{1}$ s been discovered by observation that in certain latitudes a storm generally succeeds a brilliant display of Northern Lights. This is owing to the check given to the advancing current by the opposing force of electricity, which condenses it; and consequently it falls to t'ie earth. G.H. W.
Nelson, Madison Co., N. Y.

## [For the Scientilic American.]

The 8teamer Henry Clay.
The sad catastrophe to this steamer, which has been announced, leads us to reflect on the causes which led to the great sacrifice of human lite here. From the accounts received through the papers, the ostensible cause originated in the excess of heat generated, by which the wood-work of the vessel was set on fire, being, nodoult, in en excessively dfy otate easily inflamed. A steamer constantly in action, mıst be in a state of extreme danger from this cause, and the surprise may be, that such accidents do not more frequently occur. This calamity is a sad warning to us, to guard against its recurrence. The present system upon which steamers are built, subjects them to accidents of this kind almost constantly; and no effectual plan has been yet devised to remedy the evil. That a remedy exists there can be no doubt, and as it is essential that such remedy should be at hand, I would here present the means by which this remedy may be applied, for the consideration of steamboat engine builders. The base of this means is the application of the motive power itself to remedy the evil. The intervention of steam, between a burning body, or flame, and a body subject to be set on fire from the too near approximation to the burning body, will effectually guard the latter from contlagration, or attaining a degree of heat which would induce it to takefire. This conservative action of stem is well known, and I took occasion some short time since to point out its application in extinguishing fires, by guarding the houses surrounding the fire by throwing on the surface exposed to the fire, only so much the surface exposed to the fire, only so much
water as will be converted into steam by the weat of the adjacent fire. This fact being esheat of the adjacent fire. This fact being es-
tablished, (a very important one), the applitablished, (a very important one), the appli-
cation of the same means,-namely, steamthrown and kept between the fire and the wood-work ot the vessel, will effect the object of securing the vessel from taking fire, however hot the furnace should be. I shall not enter here into the philosophy of the principle. Facts are of more importance than theory, and we have many of the former to prove the truth of the proposition. It is upon prove the truth of the proposition. It is upon
this principle that individuals have exposed their persons to the violent heat of ovens, that would cook an egg with impunity. The excessive perspiration induced from their bodies kept the heat from acting on them. It is thus that the fire-eaters (as they are called), are
withouna a red hot iron on their tongue
of steam is generated between the surface of $\mid$ unlike stone, as an evidence of the great presthe tongue and the red-hot iron, that prevents sure under which the clay is thrown together. the tongue from suffering, or being burnt: the fire-eater would notdare to put the red-hot iron on his tongue when in a dry state. Why do the operators in furnaces, where they are subject to violent heat, wet themsel ves and moisten their lips, when they are lading up
the red-hot metal? The answer to this is evident from what has been already ad vanced. These facts will suffice to prove the efficiency ot the plan to cut off the heating process be tween the furnace of the steamer and the wood of the vessel. The whole of the heating apparatus aboard the steamers should be cut off from the hulk by a body of steam filling the cavity made here, which will guard the vessel from the danger of fire. I have ooyaged in many steamers, and have found them all more or less greathy heated near the furnaces, and though this may not be dange ous in short trips, as the heat soon ceases, yet where the voyage is long the danger is in creased in proportion. It is time for us to look into this matter, and if there be danger, which
has been manifested in the fate of the Henry has been manifested in the fate of the Henry Clay, we should not lose a moment to rectify suggested, to the particular condition of this department in the steamer, belongs to the Engineer of the Machinery, and with him I leave the subject for consideration and action. The community will not be satisfied without guard is set securely against a recurrence o the distressing catastrophe of the Henry Clay

Rubit. Mills, Engineer and Architect.
Washington, D C.

## Brick Making.

Since my communication of the 6th March (No.25) I have been engaged in pefectingthe brick machine there mentioned; during the progress of which mayy unforeseen difficul. ties were encountered and many disappoint ments incurred where success seemed certain Perseverance, however, has overcome them all and I have now the satisfaction of seeing my nticipations realized.
It will be remembered that I set out with the intention of taking the clay direct from the bank, temper and mould it as stiff as potter's clay, so that the bricks might be borne off to the floor and set on edge to dry. The first part of the operation was successful from the start, and for this I am indebted to my former dry clay machine, for the secret lies in first reducing the clay to dust befure it is mixed with the water, when the two combine instantaneously. The operation of the knives then mix and temper it so thoroughly that in less than five minutes it is reduced to a consistence which no amount of labor can
excel. Not a particle of raw matter can be excel. Not a particle of raw matter can be mustrend, even the size of a bean. This tage at the South, where they have not the benefit of the great disintegrator-frost. There this part of the process is the most laborious I am told that it requires the work of twelve oxen, travelling half a day in a clay pit, to mix enough for 8000 bricks. By this ma-
chine the tempering and moulding is all done chine the tempering and moulding is all done
at once, and never more than a cart load under at once, and never more tha
To fill the moulds with clay as stiff as I proposed, was the firstdifficulty encountered, and here mary thought that I should fail. It is indeed astonishing how much this increases the resistance compared with the soft mud as usually worked, and what power is necessary to overcome it. After numberless experiments, which it would be tedious to recount; the section of a screw applied in a pecular way
accomplished the object, and since it was adop. accom plished the object, and since it
But then the communication between the sixteen moulds first filled, and the body of clay in the box, must be broken as the train passes along the railway; and this presented a far greater resistance than I had anticipated. After repeated trials and many disappointments, a combination of gearing securred this also, and finally, having perfected some minor details, chiefly in the mode of management, the machine has been put in full operation to
the satisfaction of all who have witnessed it I send you specimens of the burned and un. burned, and call yourattention particularly to the solidity and closeness of the texture, no

The steam machine, driven by a six-horse engine, works six moulds in a frame-make bree and a half revolutions per minute, giving 1260 bricks per hour. The work is all done he clay dropped at the machine, it requires ne man at the pulverizer, three boys to dus ne man at the pulverizer, three boys to dus he mould and return them to machine two boys to off:bear, and three boys to wheel
the cars to the yard and set the bricks in the sun. Each car carries forty bricks: cost
the machine, including patent right, $\$ 500$. The smaller machine is moved by one ho ttached to a twelve-foot lever; it make three revolutions per minute, throwing out our bricks each time, giving 720 per hour. In this the pulverizer is omitted, as it would render it too complicated. For this purpose the clay must be thrown into a heap and well sa turated with water twelve hours previous the machine does the rest. I can see no dif terence in the quality of the brick made by ither : cost, including right, $\$ 250$.
To make "gluts" for fronts, a separate train of mould must be prepared, made a fourth o an inch deeper, and a fraction less in width and length. If a suitable shed or other building is prepared for the purpose, all this part of the operaaion may be done in rainy weather, and thus afford constant employment to the hands. Twenty-tour hours after being mould. d, the "gluts" are ready for the hand press I have in cortemplation another improvement, which, as it is not yet fully proved, I will merely mention. The present speed is all that can be allowed to enable the boys in ront to work the pistons and pass off the bricks; when made of stiff clay they are square and true-very nearly if uot quite equal to the common latch mould front. But when quantity, instead of quality is desired, I propose to have an extra train of moulds with fixed bottoms: to work the clay soft, as in other brick machines-pass the moulds im. mediately off to the drying floor, and throw them down flat. They will of course be no better than other moulded bricks except as to the clay being better tempered, but as there are no pistons to work, and no interruption in front, the speed may be double, and consequently the quantity of bricks increased in ike proportion Francis
$12,1852$.
| We have seen specimens of the bricks re erred to above; they are of a very superior quality. In the course of a tew weeks, we shall publish an engraving of the machine.

## Elementary Mechantcs.

Strength and Strain of Materials.The materials employed in machinery are subjected to four different kinds of stress or strain, by which the force of cohesion may be ultimately overcome, and fracture ensueThese are, 1. Tenison, or any stretching force, by which they may be torn asunder, as in the case of ropes, tie-beams, king posts, \&c. 2 Transverse Pressure, or any breaking force acting perpendicularly or obliquely to the direction of their length, as in the case of levers, joists, \&c. 3. Vertical Pressure, or any crushing force acting in the direction of their length; as in the case of pillars, posts, \&c. 4. Torsion, or any twisting force acting at either or both extremities of a beam or rod such as the axle of a wheel, a screw. \&c
The natural forces, inherent in materials, which oppose the preceding forces, are, Direct Cohesion and Elasticity. Numerous experiments have been made on the direct cohesion
of different substances, particularly woods and of different substances, particularly woods and metals-on their resistance to transverse pressure, and their amount of deflection under a given pressure-on the modulus or measure of their elasticity-and lastly, though neither to so great nor so satisfactory an extent, on their resistance to vertical pressure or crushing weight.
The following ta'le contains the mean strength and elasticity of various materials; as deduced from the most accurate experiments ; it is the latest that has been published, and it was presented by Mr. Barlow, to "the British A ssociation for the Advancement of Science."
The first column of figures, marked $\mathbf{C}$, con ains the mean strength of cohesion on a
ed S , the constant for traverse strains; the ed $S$, the constant for traverse strains; the
third, marked $E$, the constant for deflectiors; and the fourth, marked M , the modulus of elasticity.

| Materials. Wocds | $\underset{\text { pbs. }}{\text { C }}$ | 8 | E | M |
| :---: | :---: | :---: | :---: | :---: |
| Acacia, |  | 1800 | 4609000 | 37390 ¢ |
| Asb, | 17000 | 2026 | 6580000 | 4988 cco |
| Beech, | 11500 | 1560 | 5417000 | 4457000 |
| Birch. common |  | 1900 | 6570000 | 6406000 |
| Bircb, American blk |  | 1500 | 5700000 | 3388000 |
| $\begin{aligned} & \text { Box, } \\ & \text { Bullet-tree, },- \end{aligned}$ | 20000 | 2650 | 05 | 5878000 |
| Cabacully, |  | 2500 | 7437000 | 4759000 |
| Deal. Curistiana, | 11000 | 1550 | 6350000 | 5378000 |
| Deal, Memel, | 11000 | 1730 | 6420000 | 6268000 |
| Elm, | 5780 | 1030 | 2803000 | 3007000 |
| Fir, New England, | 12000 | 1190 | 5967000 | 6249000 |
| Fir, Riga, | 12600 | I130 | 5314060 | 4488060 |
| Fir. Mar Forest, | 12000 | 1100 | 3400000 | 2:97000 |
| Green heart, - |  | 2700 | 1062 | 6118 (f0 |
| Larch, Beotch, | 7000 | 1120 | 420000 | 4486000 |
| Locust tree, | 20580 | 3400 | 767000 | 4649000 |
| Mabogans, - - 8000 |  |  |  |  |
| Norway spars, | 12000 | 1470 | 5830000 | 5789000 |
| Oak, English $\left\{\begin{array}{l}\text { from } \\ \text { to }\end{array}\right.$ | $\text { m }{ }_{15000}^{9000}$ | 1200 2260 | 3490000 | $\begin{array}{r} 287 \cdot 2000 \\ 47 \cup 2000 \end{array}$ |
| Oak. African, | 14400 | 2000 | 95000 | 55830000 |
| Oak, Adriatic, | $4 \mathrm{C9}$ | 1380 | 3880 | 225 |
| Cak, Canadian, | 12000 | 1760 | 895000 | 5674000 |
| Ouk, Dantzic | 1450 | 1450 | 47600 | 360700 |
| Pear-tree, | 9800 |  |  |  |
| Poon, | 14000 | 2200 | 6760000 | 6488000 |
| Pine, Pitch, | 10500 | 1630 | 5000000 | 4361000 |
| Pine, Red, | 10000 | 134 | 7360000 | 6423000 |
| Teak, - | 15000 | 2460 | 9660000 | 7417000 |
| Iron. |  |  |  |  |
| $\text { Iron, cast, }\left\{\begin{array}{l} \text { from } \\ \text { to } \end{array}\right.$ | $\begin{array}{r} 16300 \\ -\quad 36000 \end{array}$ | 100 | 6912000 | 5530000 |
| Iron, malleable, | 60000 80000 | 000 | 1440000 | 6770000 |
| Iron, Wire, | 8000 |  |  |  |

The use of this table will be exemplified in the following problems, for the demonstration of the principles of which, we must refer the Philosophy.
Force of Direct Cobesion, or Tenacity of Materials.-The resistance of a homogeneous body to longitudinal tension or a stretching force is proportional to the area of a trans-: verse section; hence, the centre of tenacity is the same as the centre of gravity of the section. The absolute strength of rods or beams is estimated by the cohesive powir of the material of which they are composed. The preceding table exhibits in column $\mathbf{C}$, the force of direct cohesion in pounds avoirdupois for every square inch. of area in the transverse section of a beam or rod of the materials enumerated in the first column.
To find the absolute strength or force of direct cohesion of beams or rods of given materials, that is, their absolute resistance to longitudinal tension or strain in pounds-

Rule-Multiply the area of the transverse section of the roctan in inches by the tubular number, in the column marked $\mathbf{C}$, opposite the name of the material, and the product will be the strength or resistance required. Note 1.-In practice, the weight or strain should not exceed one-third of the ab. solute strength according to Barlow, or onefourth according to Tredgold. Thus, the force which would tear asunder a piece of teak 4t inches broad and 2 inches thick, is $2 \times 4 \frac{1}{2} \times$ $15000=135000$ pounds. Hence a longitudinal strain of more than 45000 lbs. would be unsafe in practice. Note 2-The tenacity of materials of the same kind is proportional to their specific gravity. Hence, a piece of teak, whose specific gravity was $1-20$ part less than whose specific gravity was $1-20$ part less than
that of the preceding, would have 1.20 part that of the preceding, w
less of cohesive power.

When the direction of the straining force does not coincide with the perpendicular to the centre of tenacity or centre of gravity of the transverse section, the Rule is modified as follows: Multiply the tabular number in column C, by the breadth and square of the thickness of the beam, both in inches, and divide the product by the sum of the thickress and 6 times the distance of the line of direction from the centre of the section, in inches; the quotient will be the absolute strength required of which take one-third as before, for the practical load. Note.-In actual constructions an allowance of one-third of the thickness should be made, for the probable deviation of the direction ot the stretching force. The absolute strength will then be one-third of that found by the Rule in the preceding article; and the practical load 1.9 of the same cini and the practical load 1.9 of the sam
ity, or 1.12 according to Tredgold

