turning of which in either direction, the screws, and consequently the frame, \mathbf{G}, will be elevated or depressed, and the hanks of threads upon the rollers tightened or slackened accordingly. The screws are worked by gearing as follows :-Upon the driving-shaft, B, is fixed a bevel-wheel, gearing into and giving motion to another be vel-wheel upon an up. right shatt, I. Upon the upper end of the up. right shaft, I , a bevel-wheel I ' is fixed; K K are two bevel-wheels fixed upon one boss, or a short hollow shatt working upon the shaft, \mathbf{L}, which boss is attached to the shaft by a feath. er, which admits of the two bevelled wheels being moved length wise upon the shaft, so as being moved lengthwise upon the shat, so as
to bring either of them into gear with the beto bring either of them into gear with the be-
vel-wheel, I^{\prime}, or to throw them both out o6 vel-wheel, I^{\prime}, or to throw them both out ob
gear with the wheel, I^{\prime}, at one time. This is gear with the wheel, L^{\prime}, at one time. This is
to allow the shaft, L to be turned in either to allow the shaft, L , to be turned in either
direction, so as to elevate or depress the direction, so as to elevate or depress the
screws as desired, or to allow the shaft, L, and consequently the screws, to be stationary. Upon the other end of the shaft, L, is fixed another bevel-wheel, L^{\prime}, gearing into the horizontal bevel-wheel, $L^{\prime \prime}$, to the boss of which is fixed to the spur-wheel, $L^{\prime \prime \prime}$. The boss is fixed to the spur- wheel, $\mathrm{L}^{\prime \prime \prime}$. The boss
also furms the nut of the screw, H , by which also forms the nut of the screw, H , by which
it is elevated and depressed. The other screw it is elevated and depressed. The other screw
is likewise provided with a similar nut and spur wheel, with a connecting pinion between moving upon a fixed stud ; the intervention of the piution being for the purpose of moving both nuts in the same direction simultaneously. The boss carrying the two bevel- wheels, $\mathrm{K}_{\mathrm{K}} \mathrm{K}$, is provided with a small lever, K^{\prime}, by which it may be readily moved along the shaft, L, when desired. Upon brackets, \mathbf{N}, shaft, L , when desired. Upon brackets, N,
fixed to and projecting from the standards, A, is mounted the driving shatt of the revolving. is mounted the driving shatt of the revolving-
brushes, which consists of two eld-wheels or centres, 0 , upon the periphery of which are fixed the bars, P , carrying the brushes. Upon one end of the shait outside the carrying bracket. is fixed the driving band-pulley, \mathcal{Q}, this is driven by a separate band trom that which gives motion to the main driving-shaft, B, whereby the movement of the brush is much more rapid than that of the threads under operation, and the movement of the threads may, when desired, be entirely suspended, as before described, while that of the brushes continues. At the lower part of the machine is mounted a fan blower, T , for the purpose of throwing a current of hot or cold air upon the threads under operation. The construction of this blower is of the usual kind, and motion is given to the tans either from the main driving.shaft, B,
brush shaft as most convenient.
When a number of hanke of thread are to
What be submitted to the action of this machine, the two rollers, $\mathrm{F} \mathrm{F}^{\prime}$, are removed from the machine, and mounted in what may be termed a filling frame. The hanks of thread are then passed over the two rollers, and equally distributed on their surfaces. The rollers being placed in their respective bearings in the above machine, the driving-shatt, B, put in motion, and the spur-wheel, C , thrown out of gear with its driving pinion, so as not to give any movement to the rollers, FF ', that one
of the bevel-wheels, K , upon the shaft, L , which will elevate the screws, H , is thrown into gear with the bevel-wheel, I^{\prime}, so as to turn the nuts and elevate the screws and the upper thread-roller, F, until the threads have attained their proper state of tension. The turther upward movement of the screws is then suspended, and the spur-wheel, C , thrown into gear with its driving-pinion upon the driving shaft, B, giving a slow progressive move ment to the threads around the two rollers F F^{\prime}. The strap driving the revolving brush shaft is now thrown into gear, thereby giving motion to the brushes, which passing rapidly through between the threads, lay the fibres of them, and imparti a great degree of smoothness and evenness to the threads, and a lustre and gloss not hitherto attained. When the tension of the threads becomes relaxed during the operation, as they will, the screws are again elevated, and the proper state of tension restored. When the threads are sufficiently finished, the machine is stopped, the rollers, F F^{\prime}, are removed, the hanks of finished threads taken off, and others to be operated upon supplied, and the rollers remounted in the machine as before

For making gold foil $2 \ddagger$ oz. of gold dust mixed with $2 \ddagger$ dwts. ot silver and copper are fused together to form deep gold. The fused metal is cast in an ingot mould of 1 d inches long by 3.4 inch wide and 3.16 inch deep. The ingot is flattened into a riband $1 \frac{1}{4}$ inches The ingot is flattened into a riband 1 inches
wide, 6 yards long, and about the thickness of wide, 6 yards long, and about the thickness of
foolscap paper. This having been annealed is marked out by compasses into 160 parts, which are cut out by shears into sections $1 \frac{1}{4}$ inches square, each weighing bet ween 6 and 7
grains. These 160 piece are beaten into leaves grains. These 160 piece are beaten into leaves 4 inches square which are cut again into 640 pieces; in this
tist's gold."
Gold may
Gold may be extended into leaves which do The proof 1.290000 th of an inch in thickness The proof of this remarkable tenuity is easy. For example, an ounce of gold is equal in
bulk to a cube each of whose edges measures 512 ths of an inch, so that, placed upon the table, it would cover little more than 1.6 th of a square inch of 1 ts surface, and stand fiveiiths of an inch in height. The gold beater hammers out this cube of gold until it covers 140 square leet. Now it can easily be calculated that to be thus extended from a surface 146 square feet, its thickness must be reduced rom tive-twelf fhs of an inch to the $290,636 \mathrm{th}$ part of an inch.
The gold employed by the gold-beater should be pure ; but various colors are obtain-
ed by alloys with silver, or with copper, in different proportions. The pure gold, or the alloy, is prepared for the gold- beater by melting in a crucble and casting into flat oblong ingots, each about three-fourths of an inch wide, and weighing two ounces. Each ingot is then formed into a riband by passingit beween two rollers of polished stetl, and this laminating process is continued until the ingot is spread out to a surface of 960 square
inches of the thickness of rather more than inches of the thickness of rather more than one-eight hundreth of an inch.
The riband of gold is anuealed or softened in the fire, and cut up into pieces of the size a a square inch, and 150 of these are placed by means of wooden pliers between an equal number of leaves of vellum, each square of zold occupying the centre of each leat of velum. A parchment case, open at both ends, is drawn overthis tool, or kutch, as the packet
of vellum leaves is called, and this is enclosed of vellum leaves is called, and this is enclosed
in a second similar case, so as to cover the in a second similar case, so as to cover the
edges lett exposed by the first case. This packet is then beaten with a sixteen-pound hammer upon a emuuth block of marble, otrungly supported from below, and surrounded on three sides by a raised ledge of oak; the front edge is open, and has a kind of leathern apron attached to it for cotaling $1 i_{\text {a }} \mathrm{F}^{5}$ ments of gold that may escape in the subsequent operations. The elasticity of the packt causes the hammer to rebound, and thus ightens the labor of the operator, and enables him to apply the blows with regular effect; every now and then, during the interval between two blows, he turns the packet over to lly bends the force equaily, and he ocasion any slight adhesion between the gold and the vellum; and at intervals he opens the packet to see that the work is satisfactory, and also to re-arrange the relative positions of the squares of gold, by placing those near the surface in the centre, and placing those in the centre near the surface. The beating is con- tinued until the one-inch squares are spread out into four-inch squares. The packet is hen opened, and each piece of gold is taken pieces with a knife. This increases the 150 pieces to 600 , and these are put between the eaves of another tool, called a shoder, made f gold- beater's skin. The packet is enclosed in parchment, and beaten with a twelve-pound hammer as before. The squares of gold are again spread out to nearly the area of the gold-beater's skin. The packet is again opened, the leaves of gold are again cut into tours, and each quarter is placed between two leaves of membrane as before. The gold is in this case divided by means of the smooth edge of a strip of cane, since it has a tendency to adhere to a steel knife. The squares of gold, now increased to 2400 , are separated into
three parcels of 800 each; the squares of each
parcel are again separated by gold-beater's bags and placed on a kiln to dry. They are skin, confined in the parchment cases, and then disposed of in market to the merchants, beatenas before. These squares of gold-leaf expand for the third time nearly to the size of the leaves of membranes, and have at length attained the required degree of tenuity. The process of attenuation can be carried beyond this, but the gold is apt to tear, and the
process requires great extra care. The three process requires great extra care. The three
beatings and two quarterings expand the gold beatings and two quarterings expand the gold
to an area about 190 times greater than it had in the form of a riband, and 100 square feet of it weigh only an ounce.
After the last beating, the thin leaves are taken up one at a time by means of a pair of long pincers made of white wood, and being placed on a cushion, are blown out flat by the mouth, an operation requiring considerable skill. Broken or injured leaves are rejected; but those which are perfect have the ragged edges cut off, which reduces their dimensions to about 34 inches square. Twentyfive of these leaves are placed between the folds of a paper book, the surfaces of which have been rubbed with read chalk, to prevent the gold from adhering, and in this form gold leaf is sold.

Gas for Flowers.

The Paris correspondent of the St. Louis Times says:-
"And now let me tell you of a most beautitul and interesting discovery which has late. ly been made by a celebrated Parisian horticulturist, by the name' of Herbert. I was persuaded to go to his rooms a few days since, and I assure you I had no reason to regret the long walk I had taken. Beneatin a large glass case, four or five feet in height, and as many in circumference, were placed pots of roses, japonicas, pinks, dahlias, china asters, \&c., all in bud. By means of a certain gas, invented by himsell, and which is made to pass by a gutta percha tube to any pot required, Mr . Herbert causes the instautaneous blooming of the tiowers. The ladies in the room asked
successively for roses, dahlias, and japonicas, successively for roses, dahlias, and japonicas,
and saw them burst into full bloom and beauty, in a second. It was really wonderfulMr. Herbert is now trying to improve on his discovery, and to make the gas more portable, and its application less visible. The secret is, of course his, and his rooms are crowded every day with the most delighted spectators. 1 wish I could send you the lovely camelia which I received, which, when asked for was caly x , that the color of its flower could not even be guessed at; and yet the request was hardly out of $m y$ lips when the beautiful white camelia was in my hand. When he has uade a little more progress, Mr. Herbert intends to get out a patent and deliver his discovery to the public."
This gas was no doubt discovered among the giants of Brober Gulliver

Chicory.
While in England, says a correspondent of the Journal of the New York State Agricultural Society, we received information as to the culture of this plant, the roots of which are used as a mixture with coffee. In many establishments of the first character in London, where coffee is extensively sold, we found the real coffee, prepared and ground, and by its side, chicory, prepared and ground; and
were informed at several of these establishwere informed at several of these establish-
ments that it was preferred to mix them, onethird of the chicory to two-thirds of the coffee. The flavor of the chicory is suited to the tastes of many, and its medicinal qualities give it great favor. Most of that in use in England is imported from Belgium and Germany ; but it is being cultivated to a considerable extent in England and Ireland, and the The seed is increasing
The seed is drilled in, in April, the same as carrots or beets, on rich light land, and thinned in the rows to about six inches, and kept entirely free from weeds. In September, the with a potato- gathered. They are taken up the roots are taken to a convenient place and thoroughly washed. The rocts are cut in small pieces, either by hand or a common tur ip-cutter, having them as near a uniform size as practicable. The larger are then separated
from the smaller, and put into coarse canvas
who prepare the root in the same manner as coffee, roasting and grinding. As soon as practicable after the roots are cut, they should be dried, to prevent tie loss of the milky juice, which contains its most valuable projuice, which contains its most valuable pro-
perties. The leaves are ted to cattle and perties. The leaves are led to cattle and
sheep, which are very fond of them ; and they are also used as a substitute for woad for coloring, and are esteemed very valuable for that purpose.

A Second Sam Patch Leap.
A second Sam Patch leap came off on Monday, the 2nd inst, from the Suspension Bridge below the Falls, into the middle of Niagara River. Some five hundred persons were present to witness the feat. In consequence of the strong unexpected current of air under the bridge, the gentleman's back, instead of the pedal extremities, was first introduced to the surface of the water. He was not so badly injured; however, but that he commenced swimming towards the shore and was soon taken into a small boat. He had an appointment to descend the precipice at the Falls, in a similar manner, but the result of his experiments has determined him to look to some other opening for notority and fame.
Such feats appear to take their course like fishions One fellow has been amusing us New Yorkers for three weeks past, with jumping off the High Bridge into the Harlem River It is a profitless and dangerous feat. Sam Patch lost his life at last, and Scott, the celebrated American leaper turned crazy and put an end to his life on London Bridge.

Barnum's Opinion about Advertifing. The following extract is taken from Freedley's Practical Treatise on Business; it is
from the pen of the celebrated P. T. Barnum : from the pen of the celebrated P. T. Barnum :
Advertise your business. Do not hide your light under a bushel. Whatever your occupation or calling may be, it it needs support from the public, advertise it thoroughly and efficiently, in some shape or other, that will arrest public attention. I freely confess that what success I have had in life may fairly be attributed more to the public press than to nearly all other causes combined. Therem2y possibly be occupations that do not require advertising, but I cannot well conceive what they are. Men in business will sometimes tell you that they have tried advertising, and that it did not pay. This is only when advertising is done sparingly and grudgingly. Homæpathic doses of advertising will not pay perhaps-it is like half a potion of physicmaking the patient sick, but effecting nothing. Administer liberally, and the cure will be sure and permauent. Some say "they can not afford to advertise ;" they mistake-they cannot afford not to advertise. In this country, where everybody reads the newspapers, the man must have a thick skull who does not see that these are the cheapestand best medium throughout which he can speak to the public, where he is to find his customers. Put on the appearance of busines, and generally the reality will follow. The farmer plants his seed, and while he is sleeping his corn and potatoes are growing. So with advertising. While you are sleeping or eating, or conversing with one set of customers, your ad vertise-
ment is being read by hundreds and thousands of persons who never saw you, nor heard of your business, and never would, had it not been for your advertisement appearing in the newspapers.

The Kohi-i-noor.
Diamond cutters have been brought from Amsterdam to London, to cut the great Koh-i-noor diamond into an oval brilliant, increasing its value and brilliancy.
A machine has been erected in London for the purpose, and the greatest anxiety has been manifested for the success of the undertaking.

Extraordinary Plenomenon.

Recently during a thunder storm, at K 'ng-保, Canada, the lightning struck the bricge ierced from the town to Point Fredenick, pierced a large hole in the hoor, and chrewing at the time, had his clothes torn by the ightning, ant the metallic ornament on his cap melted, but escaped himself without ang cap melted, but
serious injury.

