Gcientificamerican

NEW-YORK, AUGUST 14, 1852.

Accidents---their Cause and Cure.
We have said so much about accidents, that were it not a duty which we owe to the community, we should not occupy our columns with a single word on the subject at present Since the lamentable accident of the burning of the "Henry Clay," whereby seventy of our fellow creatures lost their lives within two hundred feet of the shore, in broad daylight as noticed in the last number of the Scientific American, we have received a great number of communications, presenting different plans for the prevention of such catastrophies. One proposes an improvement in force pumps, to be worked by a capstan near the bow of the boat, for the extinguishment of fires; another proposes to line the boiler room and all around the steam and smoke pipes, with sheet or plate iron, filled in behind with plaster of Paris, or some other non-conductor, to prevent a boat taking fire; and another proposes that every person who travels by steamboat, or sailing
vessel, should have some article of wearing vessel, should have some article of wearing
apparel made into a buoyant lite-preserver, to keep him or her from sinking in the water. It is laudable to present good plans for the prevention of such calamities, but that will afford no remedy, unless they are acted upon. It the Henry Clay had not been racing that day, does any person suppose she would have taken fire? Not one. And after she was on fire, if a stake had been hastily driven into the ground on shore, and a chain run out from it and secured to the stern of the burning boat, almost every one on board could have been passed along it to the beach and saved. But the unfortunate event has transpired, and no less than seventy families in our land, are clothed in sadness and grief. It is easy to accountfor such accidents; it requires only the exercise of a common judgment, but to prevent future accidents of a like nature, requires a thorough reform in national conduct and feeling. If prompt punishment were awarded to those who, by reckless conduct, conduce to such disasters, fear would act as a restraint upon all those placed in positions where human lives were under their charge for safety. But we well know. that, although hundreds have lost their lives by boiler explosions in our country, both on steamboats and in workshops, and although numbers have lost their lives by railroad accidents, where the most culpable recklessness and carelessness have been proven, yet in what case-a solitary case -has just punishment been meted out to the guilty? We know of no case in which this has been done. If severe and prompt punishment were dealt out to the really guilty, we should soon see an end of such accidents; it is for want of the good admisistration of justice, that so many accidents do take place. Are our courts corrupt-are magistrates debased, or what is the matter? How is it that men of wealth or political influence can get so many delays, checks, decisions, and counter decisions in our courts, so as to obstruct and nullify the aims of justice? These are sorious questions-let our people take them to heart, and endeavor to find a remedy. We may make as many laws as we choose for the prevention of accidents by steamboat and rallroad, and as many remedies may be sug. gested as would build a pile of plans high as the Andes; but unless our courts and magisthe Andes; but unless our courts and magis-
trates do their duty, good laws will be worse than no laws, and good plans but a delusion than no laws, and good plans but a delusion
and a mockery. The evil lies with our proand a mockery. The evil lies with our pro-
secuting magistrates and courts; if they did secuting magistrates and courts; if they did
their duty we should have less cause for mournirg.

Artificial stone Fronts on Houses.
A great number of houses are now built with coarse brick fronts, which afterwards re-
ceive two or three coats of boiled oil, and are ceive two or three coats of boiled oil, and are cement, which is composed, we are told, mostIf of dried sand, some boiled oil, some red lead, and a little plaster of Paris. This cement lead, and a little plaster of Paris. This cement
resembles moist sand when put on, but it resembles moist sand when put on, but it
sticks well, and in a short time becomes as sticks well, and in a short time becomes as
hard as freestone, which it greatly resembles. hard as freestone, which it greatly resembles.
This plaster is streaked off in blocks, and a
building so covered looks like one built of dark brown polished freestone. We have heard objections made to such buildings, but not one by a person who had taste and experience in architecture. This cement does not scale off; it endures and forms a thorough scale off; it endures and forms a thorough
coating of artificial stone. The only objection worthy of note, urged against them, that we have heard ${ }_{2}$ is this-"after all, they are not so good as brick buildings, which are no shams;" these words we have marked, for they have appeared in print in a daily paper in our city, but the objection, urged against the artificial stone fronts, can be as strongly urged against the painting of any building. Paint is put on to preserve and beautify a building, and so is the artificial stone cement.

A New Fish Business.

During the past winter, the controversy respecting the resuscitation of frozen fish was effectually settled through our columns; a new fact to many was also brought to light, namely, the supplying of ponds with new kinds of fish brought from distant waters in a frozen state. We have also noticed in the Scientific American the mode of cultivating carp in the marshy ponds of France; but perhaps the most extraordinary discovery of the present day, in the fish line, is that by which they can be produced to an incalculable extent. in streamlets, rivers, ponds, and lakes, by artificial means. This process within the past three years has been employed on a grand scale, with considerable success, in various parts of France. Two fishermen in the Department of Vosges, having noticed that the fine trout in the streams were fast declining in numbers, made it their business to investigate the cause. They discovered that not one egg in an hundred deposited in the beds of the rivers came to maturity, the rest being washed away or devoured by other fish. It struck them that if they were to collect the eggs and protect them from large fish, they would in a few years obtain a plentiful supply. They accordingly in imitation of fish, placed the eggs on a bed or gravel, put them into a box filled with holes, and sank it into the bed of a river. In due time they had an abundance of small rout, which they kept in clean water, out of danger, and supplied with fitting food. Applying this process for a few years, they have stocked a great number of the streams and rivers of France with millions of fine trout. This is a subject which should arrest the attention of people in our country.

A Railroad in Broadway.
It has been proposed, in our Common Council, on the application by petition, to build a railroad in Broadway, in order to relieve it of the enormous quantity of stages and other movable obstructions. The property holders in Broadway held a meeting last week, and passed a number of strong resolutions against the project. Here is one of them :-
"Resolved, That the Railway will render Broadway, as is the Bowery now, because of its Railroad, a street through which none would pass unless compelled by necessity, preventing entirely the desire for its use for plea-sure-depriving the citizens of the use of that fine promenade, now so much sought after, and fine promenade, now so much
enjoyed with so much zest."
We believe that the owners of property would be the gainers, as well as the public at large, by a railroad. Still it would be wrong and unjust to erect a railroad through that street, against the wishes of the owners of property in it. It is our opinion that beautiful railroad carriages would be less objectionable than clumsy stages, to those who promenade along that noble street-for beautiful it The railrod may be at some future period. The railroad cars would be more regular in
their trips, and promenaders would not have their trips, and promenaders would not have to wait and run so much to avoid furious sta-
ges, as they now do, when crossing from one ges, as they now do, when crossing from one
side to the other. A railroad would not entail any loss upon the owners of property nor those doing business in Broadway; still, it they think it would, their voice should be potent in the matter. One thing we do knowthe obstructions to persons desirous of crossing the street below the City Hall Park, by crowds of carts and stages, demand some remedy. What shall it be? The owners of medy. What shall it be? The o
property should suggest some thing.

Steam.
The effect of heat is to convert many solids and liquids into vapor. Of all the vapors, we re most familiar with steam. Water, when converted into steam by heat, expands trom a cubic inch to 1700 cubic inches. But a much arger quantity ot heat enters into vaporsthan into liquids. If over a steady fire, a certain quantity of ice-cold water requires one hour to bring it to the boiling point, it will require a continuance of the same heat for five hours
longer to boil it off entirely. Liquids do not longer to boil it off entirely. Liquids do not
become hotter after they begin to boil-a thermometer will not rise any higher if kept in boiling vessel (after the water commences to boil) for a year. This fact is of importance to cooks in saving fuel; to boil meat in a gentle way, is just as efficacious as to boil it with great fury at the expense of a larger amount of charcoal.
The steam from boiling water is found to be no hotter than the water itself. What then becomes of the heat communicated to the water, since it is not indicated by the water or steam? As much heatdisappears as is canable of raising the temperature of the wa-

ter, which is converted into steam, 1000 degrees; this is now assumed to be about the latent heat of steam. A cubic inch of water raised into steam, will, if confined in a tight cessel, and $5 \frac{1}{2}$ cubic inches of water, at 32°, injected into it, raise the whole of that quantity to $6 \frac{1}{2}$ cubic inches of water at 212°-that is, the steam will be condensed into water, and the cold water elevated 180° in temperature this e
Gay Lussac discovered that liquids were more easily converted into vaper when in contact with corrugated, than smooth surfaces also that it boiled at two degrees higher in glass than metal vessels; this is a fact for boiler makers.
It is the pressure of the atmosphere, $i 5 \mathrm{lbs}$. on the square inch, which makes the temperature to be increased to 212° before it boils, for water will boil on the top of mountains at a much lower temperature, and in a vacuum at $150{ }^{\circ}$. A high heat browns sugar, and advantage was taken of the low heat at which sugar boils in a vacuum, by a Mr. Howard, in England, who adopted the system of boiling his syrup in a tight-covered pan and pumping off the air and steam. The inventor of this mprovement made a fortune.
Various liquids boil at different temperatures; hydrochloric ether boils at 52°, alcohol at 173°, water at 212°, whale oil at 630°, mercury at 662°; water, saturated with common salt, will not boil till it attains to 224°. Although steam, at the common atmospheric pressure, is never above nor below 212°, yet it can be, and is, increased in temperature by confinement under pressure. There is a great difference in the effects of low and high pres. sure steam upon the person. The steam of boiling water occasions a severe scald, it alengineer kndense upon the body, but without scalding, in the exhaust steam of a bigh pressure engine, when it issues into the air ; a thermom eter placed in this steam shows it to be below 212°. This singular property of high pressure steam is connected with its
words, the law of absorption in the gases of the atmosphere, whereby the heat is rapidly extracted from the steam in proportion to its expansive force.
The elastic force of steam at temperatures bove 212° is determined by heating water in a stout globular vessel containing mercury, m, (as shown in the annexed figure), and water, w, and having a long glass tube, $t t$, screwtd into it, open at both ends, and dipping into the mercury, with a scale, a, divided into inches, applied to it. The globular vessel has two other openings, into one of which a stopcock, b, is screwed, and into the other thermometer, l, having its bulb within the globe. The water is boiled in this vessel for some time, with the stopcock open so as to expel all the air. On shutting the stopcock, and continuing the heat, the temperature of the interior, as indicated by the thermometer, now rises above 212°, at which it was stationary while the steam generated was allowed to escape. The steam in the upper part of the globe becomes denser, more and more steam being produced, and forces the mercury to ascend in the gauge tube, t, to a height proportional to the elastic torce of the steam. The height of the mercurial column is taken to express the elastic force or pressure of the steam produced at any particular temperature above 212°. The weight of the atmosphere itself is equivalent to a column of mercury of 30 inches, and this pressure has been overcome by the steam at 212°, before it began to act upon the mercurial gauge. For every thirty inches that the mercury is forced up in the gauge tube by the steam, it is said to have the pressure or elastic force of another atmosphere. Thus, when the mercury in the tube stands at thirty inch. es, the steam is said to be of two atmospheres at 45 inches. of two and a half atmospheres at 60 inches, of three atmospheres, and so on.

Woodworth Patent Pamphlets.

Any of our readers wanting a copy of the Report against the extension of the Woodworth Patent Planing Machine, in pamphlet form, can have one sent (post-paid) by enclo-
sing two three-cent stamps. Its publication sing two three-cent stamps. Its publication
will occupy the remaining numbers of this volume, at the rate of two columns each week. In connection with this notice, we can hardly omit to furnish our readers with the names of the Committee on Patents in the House, to whom the whole country is deeply indebted for the satisfactory manner in which this affair is placed before them. Seldom have we read a more able and convincing report. D. K. Cartter, of Ohio, Chairman ; M. M. Dim. mick, of Pa., W. T. Ward, of Ky., Benj. H Thuroton, of R I, and Alexander White, of Ala. Gentlemen, we sincerely thank you for having nobly done your country service.

To Save from Drowning

We have seen it stated in books and papers, that if a person falls by accident into deep water, he will float and not sink if he lies still and does not lift up his hands. The reason given is, that the head, having so much cavity or air space in it, will keep above the water, and thus prevent the body from sinking. This is certainly not correct; no person can float in deep water unless he has learned to do so by a great deal of practice. It is true that the body is more buoyant in salt than fresh water, but no person who cannot swim will float two minutes in sea or river,he will soon sink, as we have seen in more than one case. All our young men should learn the art of swimming; it was part of the education of the early Romans, and should also be of the young men of our Republic.

Something Wanted for Engravers.
A substitute for boxwood, for wood engraving, is much wanted. This wood is very scarce ; it costs $\$ 500$ per ton, and is all imported from Turkey and Italy; various kinds of wood have been tried to supersede it, but not one among all the varieties tried, has the same qualities. Hardness is not the only quality, it must be close in the grain and free from breaking before the graver. Type metal, with some change in the form of tools, may supersede it ; the price of boxwood is getting higher every year.
The readers of the Scientific American will have the able Report of Mr. Cartter to bind up in this volume.

Reported Officially for the Scientific American LIST OF PATENT CLAIMS Issued from the United States Patent Offic

[See engrav the Sci. Am.]

 W. Blanciard, of Clinton, Mass. I do not lebim the
application of the above-named ievers to the trap or

 tween the top and botom jack leevers oords on other
devices. for raising and drawing down the harness.
 tant rom the fell lor cloth making point the the motions
tof the harness all commencing and ending at the

 and combining the parts for moring the figuring
cainin or cylinder, with the other parts of the ma.
che
 as will as forward as the
back ward and formard.

 mhose transerse section diffrsi from acircular form
for the construction of instruments for measuring, in liceating, and regulating the pressure and
ture of fluids, substantiall as described.

 tend to
carry.
forth.
TALLY BoARD-By F. N. Clark, of Chicago, III.:
I do not condine myself it any particular form or
mon

 or in any.manner substantially the same

 and for the purposes specified.
Seoond, we claim the pins or
 ped projection or four--sided inclined plane lever. and
star wheel, arranged substantially as described, for

Third, we cliaimethe guide in combin
movers, and star whee, as deercribed.

 therefore the calim in d .
jacquard card cylinder.
 claim the ajastable band on whic the index is ist
tered, for adjusting the index to the chasers, the
 suitabe apparatus for causing said chaiers to ap-
proanc and tecede from a common centre, for the
purposes stated purposes stated
nid $I T$ also cllain
 oater end of which shaft is attanhed an arank, to
drive the hevel gear wheil ans set forth and descri di ive the hevel gear wheel, as see
bed, and for the purposes tatad.

 and those on the other. any subdivisionsor fractions
of the targer that mas be desired, substantially as
set forth.
 ranged substantially as described, go that the second
row of heddles or harness shall fall and rie so much

 top or
plane.
Plane.
Sicond, the apparatus which inserts and draws the
wires to form the pile, constructed and operated submires to form the e pile,
stantiall gas despod
Third, the derices
atices. beam or beams containing the warp, substantially as
described
Ox Yorrs-By Ezra Hough, of St. Johnssille, N .
 I claim the connectivg of the filioe in which the
bows are secured by means of the chains and rods
bit the chains passing over the pulleys, by which neither
of the sides nor bows can
on moved laterally with

 for the purpose set forth.
 of the toe act against the side of the toee, or laterall
ig amanint the shank, in combination with making it,

pestans.
$\underset{\substack{\text { Cosoorina } \\ \text { nis } \\ \text { Storgh, Pa. }}}{\text { Save-By Samuel Eberly, of Mecha- }}$ Watre
atio
atio.
Cooriva, STovi-By Russell Wheeler \& Stephen
A. Bailey, of Utica, Y. Y. Cooring Srove-By Garretson Smith, H. Brown,
and Julius Holtzer, (assignors to North, Harrison $\&$, Chase), of Philadel phia, Pa.

Woodworth Patent.

[Continued from page 374 .]
Where an application like this is made for a third extersion, it is material to consider the degree of merit in the invention, the exmanner in which the previous bounty of Congress has been applied, the mode in which the power hitherto vested in the applicant has been exercised, the operation of the previous
grant upon the public interests, the effect of a new grant upon the rights of other citizens, and the nature and extent of the new burden to be imposed upon the country for a long seies of years.
It is not claimed that William Woodworth, in 1828 , invented anything more than an improvement in the method of dressing boards by machinery. Planing machines had been
for many years in extensive use in the United States as well as in Europe. The inventions of Bentham, Bramah, and Muir, in Great Britain, of Roguin and De Manneville in France, of Hill, Hale, Minor, and others in this country, were known to the world. That many of these were valuable and effective machines,
is attested by the fact, that in many localities is attested by the fact, that in many localities worth mach used in preference to the them the improvements of other recent inventions, the most successful machines of the present day have been produced. The affidavits furnished by the administrator on his application for the first extension, show that the Wood-
worth invention, for some years after the patent, was a failure in practical operation.The fact hardly seems to be disputed, that no
machine built in conformity with the descrip machine built in conformity with the description in the patent of 1828 , ever was or ever
could be successful. The fact is undisputed that the valuable features of the present Wood worth machine were first described in the patent of Uri Emmons, which expired and became public property in 1843. The fact is also undisputed that Emmons would
not permit his improvements to be incorporanot permit his improvements to be incorpora-
ted in Woodworth's machine, until Woodworth obtained his consent by uniting with him in a mutual and equal partition of the whole country between them. The fact is undisputed that since the introduction of the features of the Emmons patent into the
Woodworth machine, it has become successful and valuable. Long after the death of both and valuable. Long after the death of both
the patentees, an attempt was made to prove
that Emmons had no right to what he sold, and that Woodworth owned, before the pur-
chase the right which he acquired under it chase, the right which he acquired under it.
The attempt was successful in the Pennsyl vania circiit was successful in the Pensyl, having been finally disposed of by the decision of the Supreme Court of the United States in the case of Wilson vs. Simpson, overturning the allegation that Woodworth was imposed upon by Emmons, and holding that the evidence was illegal by which the fact was sought to be established. (9 Howard's U. S. R. 120.) In the recent case of Brooks et al vs. Fiske et al., decided in the first circuit of the United States, it was held that the Woodworth machine was merely an improvement on the Hill machine. In the circuit court over which Chief Justice Taney presides, the fact was found by the verdict of the Maryland jury, that the patent re-issued to the administrator in 1845, was for an invention different from that secured to his father by the patent of 1828.
That the improvement devised by Woodworth was meritorious is undoubtedly true; but that it is equally so with improvements in planing machines, since made by other inventors, will scarcely be contended. Yet it has demanded and received a larger bounty probably, from the government, than any twelve
of the mosy prominent American inventions of the most prominent American inventions
in the leading departments of mechanical gein the leading departments of mechanical genius. William Woodworth, the patentee
who best was his own invention, did not claim to be the inventor of the combinations which are put forth in the claim of the patent as re-issued to his administrator five years after his death. Indeed, one of the publications left with the committee by the memorialist in support ol his application, contains the affidavit of the patentee, made the year before his
death, in which he substantially repudiates, as forming no part of his invention of 1828, the very combinations afterwards claimed in the re-issue; and swears that another machine, containing those combinations, which has long since become public property, was no infringment upon the patent. If that patent has since his death acquired an additional va lue by absorbing all other improvements in the expanded claims of the re-issue, it is ra-
ther to be regarded as the misfortune of the country, than the merit of the patentee.
The estimate placed by William Woodworth upon the value of his invention in 1828, the year when he obtained his patent, is shown by his sale to Strong of half the right in the United States for fifteen hundred dol-
lars. In 1842, William W. Woodworth, on applying for the first extension, submitted, in support of his claim, the affidavit of James G. Wilson, estimating the value of the invention
at three hundred thousand dollars. The' memorialist claims to have sold to Wilson in 1845 the entire right in the United States, except in the city of New York, for the whole extended term of seven years, for fifty thousand dollars. If these practical tests of value are to be regarded, the immense tribute from the public for the first ninety days of the extended term vastly overpaid the whole value of the invention.
The committee felt the importance of ascertaining the extent of remuneration received by the memorialist through sales of rights, and licenses to use the machine under the Woodworth patent; and urged upon him strongly the importance of furnishing this information. The administrator thought proper not to comply with this request of the com-
mittee. They might, with entire propriety under these circumstances, apply the rule that when a party possessing the means of knowledge chooses to withhold it, and declines to disclose tacts material to the inquiry, every presumption is to be taken against him. But the committee were not inclined to indulge any such presumption, and they accordingly resorted for information to the records of the Patent Offlce, the various documents before
then, and the various papers filed by the m then, and the various papers filed by the m
morialist on former a pplications in relation to the patent.
The abstracts furnished from the records of the patent office show very clearly, that the papers upon which the board acted in grant-
which Congress acted in granting the second extension, failed to disclose the true amounts
which had accrued from the invention. The memorials to the last and present ${ }^{\circ}$ Congress do not assume to give any account of the receipts of the administrator. The memorial to Congress during the session of 1844-5, professed to give an unsworn statement of receipts and expenses, though in a very vague and general form. But this extended only to its date, leaving four years and nine months of the unexpired term of the first extension still to come. For the receipts of this period of nearly five years, no account is given in any of the memorials. Nor is any credit given by the memorialist for the proceeds in damages and costs of those innumerable suits against "wealthy infringers," in which he claims to have been so uniformly successtul; though the expense of those litigations is brought in
upon the other side as a claim against the upon the other side as a claim against the
government. Nor is any credit given for the enormous sums paid to those to whom the ad ministrator from time to time assigned shares in the public bounty of which he was the beneficiary. Upon what understanding these assignments were made, the committee do not know, except so far as it may be inferred from the continued amicable relations of the parties, the unbroken succession of conveyances through the whole period to the same grantee, and the common exertions of both parties in each instance down to the present time for further grants from government, in the name of the administrator. But even upon the showing of the applicant himself in his various memorials, corrected as to some errors by facts subsequently developed, it would seem that $\$ 52,73332$ had accrued to William Wood worth from the invention prior to his death; and that the amount which had accrued personally to W. W. Woodworth, administrator, prior to June, 1845, including the amount of sales by his father, was $\$ 264,013$ 32 ; leaving still unaccounted for, all that remained in his hands of the unexpired term of over four years of the first extension; the reservation in the grant to Wilson, under the second extension, of the city of New York, the most valuable right in the country; all the proceeds of the litigations; all the receipts by himself and his father from the various machines in the running of which they were themselves interested; and all the pro ceeds of the sale of the re-issued patent, which was granted to Woodworth on the 8th of July following, and conveyed to Wilson on the following day.
Assuming that these were all the returns which had been raceived from the invention, and that they could be estimated collectively at as low a $\varepsilon u m e v e n ~ a s ~ h a l t ~ a ~ m i l l i o n ~ o f ~ d o l ~-~$ lars, does it not seem incredible that a furthe claim should be made upon the bounty of the government? But this is not all.

To be Continued]

New Steamers.
Two first-class steamers called the Andes and Alps, are at present building at Dumbarton on the Clyde, tor Messrs. Burns, and are intended to run between Chagres and New York. A ship of 2,000 tons is now building in Liverpool, of soft wood, and on the model of the American ships, to prove by experiment in how far English ship-builders can compete in cheapness with Americans A steamer of 213 tons, named Lady le Marchant, and owned by a company in Newfoundland, was launched at Greenock on the 21 st She is intended to ply along the Newfoundland coast.

Balloon and Steam Engine
Another attempt was recently made at the Hippodrome, Paris, to solve the problem of steering ballons. A balloon, in shape like a whale, was filled with gas and attempted to be guided by means of a shaft of wood suspended horizontally with a sail at the end, to act as rudder. To this shaft was affixed a platform with a steam engine of four horse power, working a screw with three terminal paddles like three sails of a windmill. The experiment was made in presence of
veral scientific men, but was unsuccessful.
Some very important experiments have recently been made with anchors, in England

