Stereoscopic Daguerreotype.
Messrs. Editors-Directly after seeing the extract from the "London Mining Journal," in No. 34 of the Scientific American, I succeeded in re-producing the solid daguerreotype. My stereoscope is 9 inches long, 6 high, and 5 deep; my daguerreoty pes are half sizes, placed upright in each end of the box (stereoslaced upright in each end of thave two mirrors, diverging at an s ape) ; I have two mirrors, diverging at of sixty degrees from the centre of the angle of sixty degrees from the centre of the
front of the box; there are two sight holes, two inches apart, in the middle of the front of the box; the light is admitted from the back. This instrument produces the most sstonishing effect; it brings out the picture \ln bold relief, just as if the subject were standing before you in reality. It requires to be seen to be fully appreciated.
I have made a decided improvement on the above instrument: I take two pictures on one above instrument: I take two pictures on one
plate, two and a quarter inches apart ; or, what plate, two and a quarter inches apart, or, what
is still better, on two plates joined togetheratterwards. I always place my two camerasat an angle of thirty degrees, in taking the pictures, keeping the eye of the subject directed in a line drawn directly between the two cameras, thertby producing what we might call a right and a left picture.
When I wish to produce the solid pictures, I siroply look at the so arranged plate, through a common opera-glass, having the concave glasses taken out and convex ones put in their place, although the latter are not absolutely
necessary. A yet simpler mode is to look at necessary. A yet simpler mode is to look at
the above-named plate through a pair of common spectacles, having glasses of short foca distances; but the opera-glass is the best, in asmuch as it can be set to any focal distance, and it prevents the reflection of surrounding objects.

I perceive that our leading daguerreotypists have taken the matter in hand, and I expect to see them produce beautiful pictures which
will rapidly take the place of the old kind. J. F. Mascher.

Philadelphia, June 13, 1852.
[A sharp controversy has taken place between Sir David Brewster and M. Claudet, about photogranhs taken by lenses, it has appeared in the "London Times.". Sir David Brewster asserts that photographic portraits deviate more and more from truth as the lenses increase in diameter. He advised the search after more sensitive materials and the use of small lenses. He says, "that while M. Claudet will continue to rractice his art, as he has hitherto done, with large lenses, others," he hopes, "will not disdain to guide the
light of the sun by the light of science." He light of the sun by the light of science." He is very sharp on poor M. Claudet, and says he produces a copious number of grim anamor phoses of humanity, which have the merit o showing how well people look in their wind ing sheets. M. Claudet replies, and has great-
ly the advantage of the Scotch philosopher in tem per and discreet language; in fact, he show Sir David to be very inconsistent, for he a warded Claudet the only Council Medal at the Great Exhibition for his pictures, while now he denounces them. He says he will prove "that perfect lenses, of $3 \frac{1}{4}$ inch apert are, and a sufficiently long focus, operating at a distance of 12 feet, are capable of giving a correct representation of the human form, and producing binocular portraits, to be raised into relief by the stereoscope without exaggeration, and he stands ready to repeat them before any scientific persons interested in the question." Here, then, Claudet marches right to the point in settling the dispute with the famous Optician-the greatest of this or any other age-and it would be nothing wonderful if he were mistaken: no man is perfect, the greatest and best make mistakes.

The Electric Fire Telegraph.

Your paper of June 12 contains a very kind reclamation from A. A. Pope, of Somerville, Mass, in my behalf, as originator of the Electric Fire Telegraph. I wish, with your per mission, to add a word in justice to the part ta ken in this enterprize by Moses G. Farmer the constructor and present Superintendent of
the Fire Alarm in this city. the Fire Alarm in this city.
The present performance of the Fire Telegraph, in Boston, may be first briefly stated as the basis of its claim to scientific novelty
and public utility. The nineteen alarm bells,
scattered over Boston, are struck simultaneously with heavy hammers, by the touch of a single finger, at the Central Office, where an alarm of fire comes in over the wires from any one of the numerous signal stations in dif terent parts of the city. Thus, frequently within a few weeks, the bells all over Boston have begun to strike the District number within a few seconds of the first discovery of a fire in some remote precinct. This is believed to be the first application of the telegraph to produce the effect of power at a distance. It is also the most thorough municipal organization which has yet been attempted, endowing the Municipality with nerves of sensation and motion, with brain and muscular apparatus.
My part in the originating of this system dating back to 1845 , has already been sufficiently stated in your journal. As early as 1848, Mr. Farmer's electro-magnetic escape ment, for the liberation of powerful striking machirery, was constructed, and his attention was directed to the mechanism of the system the right to some parts of which he has se cured. After my communication, in March 1851, to the City Government of Boston, Mr farmer entered at once into the work of prac tical arrangement and adaptation, giving proportion and form to the various parts, combi ning their operation, devising new safeguards and instruments, and contributing so much to the system in its present effective operation, that I wish always to ascribe to him a fully equal part with myself in its production.
I may be allowed to add that the construc tion, in Boston, has presented difficulties, apar from the frst application of a new system greater than would exist in almost any othe city in this country. Where there a few large fire bells, with suitable tolling apparatus al ready provided, the application, with the experience now acquired, would be easy, and an indefinite amount of power could be obtained. Any communication addressed to Mr. Fariner with regard to the extension of the Fire Tele. graph in other cities, would receive also from me such attention as it would be in my powe to give.

(Hor the scientific american.)

New Instrument for Navigation
As your paper is the medium through which the public receives information of nearly all the improvements in arts and sciences, at the present day, I have taken this method to make known a valuable improvement in getting the longitude at sea; or, the Easting from New York city to Liverpool, and the Westing from Liverpool to New York city, or any other place. With a good time-piece in hand -well regulated to mean time-and with an instrument that I have made for the purpose,
I make the first observation in the seaport beI make the first observation in the seaport before the ship sails (this can be done at any time of night, if it be clear starlight); note down the bearing, the day of the month, the hour, minutes, and seconds, A. M. or P. M This may be done a week or more before the ship leaves port, provided the time-piece keep
correct time. The subsequent observations correct time. The subsequent observations
can be made at sea, any time in a clear starlight night, and any time of the year, in the northern hemisphere. The subsequent observations are reckoned from the first observation made in port, each one independent of the other. I have a book, containing two tables, which are made for the purpose of saving time in the calculation; also examples made out, giving the answer in longitude, going East or West, and a diagram or figure annexed to each example,-making this method as plain to be understood as to look at the face of a clock to learn the time of day. In making the calculation, you set down the degrees thus: 45° ' 20 ', as the first observation, and the time; next, the present observation, and the exact time ; then turn to the tables, there is nothing to be done in the calculation butto add orsubtract. The observation can be made in ten minutes, if the ship runs steady, and the calcu ation in less time.
I use none of the planets, or their satelites, In my calculations, excopting the one we stand on; I would prefer that the moon should be below the horizon at the time of making the observations. This instrument is so planned
that there can be a compass attached or detached at pleasure, for the purpose of getting
he variation of the needle; this can be ascer tained at the time of getting the latitude by
the Polar Star. This instrument may also be use Polar Star. This instrument may also be used, in preference to the sextant, in getting
the latitude and longitude by the sun. Supthe latitude and longitude by the sun. Sup-
pose, at 10 o'clock A. M., observation made; pose, at 10 o'clock A. M, observation made sun's altitude 55°; bearing of the compas 70°, south. east. The sun passes the meridian hears 61° south-west, from $70^{\circ} 9^{\circ},-4^{\circ} 30$ outh-east or north-west is the variation the needle.
In taking the angles by this instrument, you have no need of a line and plummet, pendu lum, index hand, or vernier hand; yet every five minutes of a degree can be distinctly seen.
This instrument can be separated into four This instrument can be seperated into four
parts in one minute, and placed in the cabin parts in one minute, and placed in the cabin
John Strinson.
Danville, Warren Co., N. J., June 8, 1852.

Recent Foreign Inventions.

To Prevent Wood From Warping.-C Francois Tachet, of Paris, has taken out a patent for the following method of preparing wood to prevent it from warping or shrinking. The ordinary method of doing this is to employ two or more thin pieces which are united together with the grain cross-wise by means of glue or liquid cement, but this only partially answers its intended purpose as glue, or cement, applied in a liquid state, is always liable to be affected by a moist atmos phere, and the expansion produced thereby and the subsequent unequal contraction in drying, causes a certain amount of warping Now the object of the patentee is to unite pieces of wood together, as to render them this he effects by employing the cement in a dry and powdered state, and applying heat to the exterior of the pieces of wood to be united the exterior of the pieces of wood to be united,
so as to effect the melting of the cement by ransmission. The cement which the patentee employs is gum lack, alone or in combina tion with other materials. This he reduces to a powder, and sprinkles evenly over the surface of one of the pieces of wood to be uni ted. He then lays the other pieces of wood process of sprinkling cement and applying thicknesses of wood according to the ultimate required thick ness to be produced. He then clamps the pieces of wood together and applies sand heated to about 300° centigrade to the exterior surfaces, and continues this ap plication of heated sand until the cemert is melted, when the sand is removed, and the ai admitted to cool the wood and set the cement When quite cold, the prepared wood is re moved from the clamping. press, and may then be applied to any useful purpose.- [London Mechanic's Magazine.
[We commend this invention to the attention of pianoforte makers, and all cabinet makers in general.

Tomato Figs.
The following is the method of preserving omatoes in Bermuda, and there by manufactuing a sweet preserve something like figs:"Take six pounds of sugar to one peck (o sixteen pounds) of the fruit, scald and remove the skin of the fruit in the usual way, cook them over a fire, their own juice being suffcent without the addition or watr, they are then shaken out, spread on dishes, flattened, and dried in the sun. A small quantity of the syrup should be occasionally sprinkled ver them whilst drying: after which pack nem down in boxes, treating each layer with powdered sugar. The syrup is afterwards from year to year, and retain their flavor sur prisingly, which is nearly that of the best quality of fresh figs. The pear-shaped or \sin gle tomatoes answer the purpose best. Or dinary brown sugar may be used, a large por tion of which is retained in the syrup.

The Mouth of the Mlasissippt.
A distinguished officer of the Engineers of he U. S. Army, who has long resided in New Orleans, and who made good use of the many opportunities offered him for studying the peculiar character of the delta of the Misssissip. pi and the characteristics of our grand but nysterious river, has made a proposal to the
into a contract with that city, the State, or into a contract with that city, the State, or
the General Government, to deepen the channel over one of the bars at the mouth of the Mississippi. He proposes to give a depth of at least twenty feet, by the lead, at low water, over the shallowest part, and to make the hannel wide enough for a tow- boat with one ship on each side to pass at all times: to maintain this condition of the bar for twenty-five-years-when the same process could be again applied-for the sum of one hundred thousand dollars per annum. The first instalment to be paid only when the depth and width shall have been made. Should tbe width shall have been made. Should tbe
depth of twenty-five feet, instead of twenty leet be obtained, the sum of $\$ 125,000$ will be paid.
The plan of operations has been submitted, to many professional and practical engineers, and no objection has yet been made to it.

artesian Wells in Arkansa

The Dallas (Ala.) Gazette says that tbe grst Artesian well of Mr. J. E. Mathews, in Cahaba, is completed. It is 735 feet deep. and sends forth a stream of water measured at 1,200 gallons per minute. The famous French well at Grenoble, it is said. does not discharge more than half this quantity. "The water (says the Gazette) boils up, roaring like a cataract, forming a branch of considerable ize, and the low grounds, some two hundred yards distant, require ditching, to carry of the immense quantity of water collected upon its

Mr. Reid, the successful borer of this well, has commenced boring another, some sixty yards distant (for Mr. Mathewt) which will ee some 1,500 or 2,000 feetdeep. To prevent injury to the first, it is necessary to make the second one much deeper, so as to reach a diferent stratum of water. The first well is ubed, as the second will be.
Mr. Reid is also boring a well for Dr. English, two hundred yards distant from Mr. Mathews. It is now 536 feet deep, and discharges 200 gallons ot water per minute."
A correspondent of the Gazette, gives tbe following in relation to the first well of Mr. Mathews, which was bored for the purpose of btaining sufficient water to supply a steam cotton mill :-
First, a well was dug in the ordinary way, 32 feet through the red clay sand and gravel ying upon the rotten limestone. A large pine log was then procured, and a hole 34 nches in diameter bored through it. After sharpening the end, and putting an iron band around it, the log was put down and firmly driven and forced into the rock. The well as then filled up-the upper end of the \log ppearing about a foot above the surface. The boring then commenced, and, with the various tools and contrivances of the art, the earth was rapidly penetrated.
As each lower sheet of water was reached by the tools, the water was thrown up by the whole in greater quantities and with more vilence. When the "first water"-that is, he water just below the first sand stonewas reached, the upward flow of the water did not exceed seven gallons per minute. It was increased to one hundred gallons when he second sand stone was perforated, and on reaching the third sheet of water, upwards of 300 gallons per minute rushed up through the orifice, seemingly impatient of its limite.
Thinking that the quantity of water would be increased by enlarging the hole, they rimmed out 94 inches in diameter, and 538 feet deep, to the sand stone lying above this third bed water, and inserted a tube from the first, and resting upon the third sand stone. They were not disappointed. The water from a mall stream became a large column rushir pwards with violence, at the rate of 1,300 gallons per minute, and running off in a considerable rivulet.
The walls of the Buffalo Republic printing ffice fell last week with a tremendous crash burying several compositors in the ruins. They all escaped most miraculously, with a ew bruises, the cases nd imposing stones supporting the roof and bricks, and giving them time to creep out. The forms, type $\& c_{\text {, }}$ were all knocked into pi.

John Cunningham, the American engineer

