Srientific Amuritan.

VOLUME VII.]
NEW-YORK, JUNE 26, 1852.
Scientific American, circulation 16,000

Cooke \& LeCount, San Francisco, Cal.
Courtenay \& Wienges, Charleston,
S.
John Carrathers, , , avannaha, Qa.
M. Boullemet, Mobile, Ala,
M. Boullemet, Mobile, Ala.
Sidney Smith, St. Louis, Mo
M. M. Gardiseal \& Co., Paris.

Responsible Agents mar also be found in all the
principal cities and towns in the principal cities and towns in the United States.
Terms $\$ 2$ a-year- $\$ 1$ in advance and the remain
der in 6 months.

RATHMOAD IVEWS.

Railroad Car Axles.
A correspondent of the American Railway Times, in a long communication, discusses the question, " what is the cause of the breaking of railway car axles." He presents totally different views from those which appeared in the Journal of Commerce, by a correspondent, a few weeks ago. The following are the causes which he believes tend to break the axles of cars:-

First-The wheels are attacked to the axles at unequal distances apart. I have found the extreme distances to equal fully three-fourths of an inch. Second-The guard rails which are placed opposite points of the frogs, for preventing the wheels from taking the wrong direction as they pass through them, I have frequently seen so placed that the distance between the scores in the frogs and the guard between the or more greater than the disails is an inch whe great of course the base of the wheels, or rather that portion of the wheels which rest upon the rails at the moment of passing, must be spread that amount, and the axle must bend. sufficiently to correspond therewith or be broken. So forcibly are these guards opeated upon by the wheels as they pass them, that large spikes are found to be insufficient to keep them in their place, and the repairers find it necessary to place pieces of planks or joists, in the form of struts or braces, between them and the frogs to prevent them from being pinched towards each other."

Rocheater and Niagara Falls Railroad The railroad from Rochester to Lockport and Niagara Falls, is completed : it is believed that it will be in very active operation next month. This is a very important railroad; hitherto there has been no railroad direct to Niagara Falls from the East. To get there visitors had to take the round-about road by Buffalo, and come away backwards about fif teen miles. It is true, they could go by the canal to Lockport, at the slow pace of some old line boat, and then take the cars, and "sail like a snail" on the miserable old railroad from that place to the Falls. All this will soon be changed ; passengers will steam it right through without winding round and round by Buffalo and Schlossar's Mill-so famous in story. It passes through a beautiful and fertile country, the garden of our State and visitors will be able to go to the Falls from New York city in about 16 hours.

Dilatory Telegraph.

Smith Pyne complains, in a letter in the Washington "Republic," of the shameful delay of two messages which were sent to him by telegraph. One was an account of his sister's death: it was received by him one hour and a half atter it was sent through, and an hour too late for the cars to take him away that evening; it was a shame.

A short time ago Dr. Jackson administered a pound and a half of ether to a lion, at South Boston, Mass., and removed his claws during the twenty minutes the animal was insensible.

SANDER'S IMPROVED GRAIN DRIILL.---Fig. 1.

Figure 2.

CNUMBER 41.

The accompanying engravings are views of an improved Grain Drill, patented by Benja\min D. Sanders, of Holiday's Cove, Brooke Co., Va. Figure 1 is a back view of the Drill in elevation; figure 2 is a longitudinal vertical section, taken at the middle of fig. 1. Fig. 3 is a section showing the cam which operates upon the lever that works the shove rod. The same letters of reference indicate ${ }^{2} \mathrm{ke}$ parts on all the figures.
A is the hopper or grain box; it is supported by standards, a, which rest upon the side rails, b, of the frame; B B are cylindrical tubes placed horizontally underneath the hopper. Each of these tubes has an opening in the upper part, through which the grain from the hopper passes. A valve, c, works over each opening so that the communication from the hopper to the tubes may be cut off when desired. C is a rod which passes horizontally through the tubes, B B. This rod has a number of circular slides, i, upon it, one fitting each tube. D is a lever which passes through an eye at one end of therod, C. Thislever has its fulcrum at d : which is formed by a pin passing through the lever, and two plates which are secured by one of the side rails, the lever being between the plates, as shown in fig. 2. The lower end of lever D has a friction roller, G, which revolves, as it is acted upon by a cam, E ; this cam is placed upon the axle, \mathbf{F}, of the wheels, and is formed of two separate parts, one part, f, being firmly secured to the axle, and the other part, g, moany desired point by the set screw, h. On each of these parts, f and g, there is a zig-zag projection. The space between these projections, therefore, is of a zig-zag form, and the roller, G, sets in the space. As the cam, E , revolves with the axle: the inner surfaces of the projections, f and g, act against the roller, G, and give the lever, D , to which the roller is attached, a vibratory motion. As part of the said lever passes through an eye in one end of the rod, \mathbf{C}, a reciprocating motion is consequently given to it, and also to the slides. tubes, B B. The slides move are within the forwards in the tubes, directly under the openings in the upper part of them; therefore, as the grain falls into the said tubes, it is pushed out first at one side, and then at the other, by the reciprocating motion of the slides. The grain falls from the tubes, B B, into inclined troughs, H H -one for each tube; these convey the grain to the leather tubes, I I, which distributing the grain will now be rendered evident. The grain may be distributed faster or slower, by giving the rod, \mathbf{C}, a greater or less stroke, by placing the part, g, of the cam E , at a greater or less distance from the other part, f. If the space between the zig-zag projection is considerable, there will be a shorter stroke given than if the space were narrower. The fulcrum, or pin, d, of lever D may also be placed higher or lower, holes being made for thatpurpose, by which the stroke of the rod, C, may be lengthened or shortened.
We will now explain how the lower ends of the teeth are thrown up when they meet with obstacles in the earth. K are draw rods (one seen) secured to the front of the side rails, l, in the usual manner, the ends of the said draw rods being forked and fitting in eyes. The opposite ends of the said rods are also forked, and in these forks the hollow teeth, J J , fit; to the front of each hollow tooth there is a le ver, L , attached by a pivo, k; this lever passes up through the fork in the end of the draw rod, and is attached by a pivot, m a lever M , which is secured to the draw ro by a pivot, 2. O is a frame hung loosely by pivots, n, to the side rail, b; the ends of this frame rests upon the levers, M M.

It will now be seen that when any obstacle comes in contact with the ends of the hollow teeth, J J , the teeth will be thrown back, and
the lever, L , will draw upon the lever M , and raise it and the frame, 0 . When the ends of the teeth have passed over the obstruction, the frame, \mathbf{O}, by its weight, will depress the levers, $M M$, ard the teeth will resume their original position. These hollow teeth are al so raised and depressed by the straps, P, secured to the back of the teeth. These straps are attached to the shaft, R , and by turning it the teeth are elevated and depressed as may be desired. This is a grain drill which can be be desired. This is a grain drill which can be
made cheaper than many now in use; it is si imple, strong, and so formed as not exert any grinding action upon the grain, a fault peculiar in the distributing in some other drills.
Mr. Sanders having secured a patent, more i ifformation about rights, \&c., may be obtained by letter adaressed to him at his residence i Holiday's Cove.

MLECRLANEOUS.

Something more about the Srike.

The London "Weekly Dispatch" states that upwards of $£ 30,000$ ($\$ 143,500$) were lost, per week, tor fifteen weeks, making no less than $\$ 2,282,500$. The wages have been redu ced greatly below the level of what they were before the strike, and there a're now hundreds of workmen out of employment, their places having been supplied by more laborers during the strike. A new invention has also resulted from the strike, by which castings are made, by a firm in London, without the use of skilled moulders. The Association of employers now numbers 25,000 , and it speaks well for their spirit that such sentiments as the following are embraced in a recent address issued by them to their workmen ; it says:-
"To us it shall be no disqualification to employment that an artizan has tried the experiment offered by co-operative workshops. Of these laudable, if mistaken attempts to secure to associated labor the profits of individual capital and enterprize, we have only too little reason to be jealous of the competition. But whether they succeed or fail, we trust that the rival theories of competition and co-operation may, side by side, be practically applied, without interruption, to social harmony and the mutual good-will of neighborly citiand the mutual good-will of neighborly ati-
zenship. None shall hail the success of the zenship. None shall hail the success of the
solution of the industria! problem with more solution of the industrial problem with more
sincere congratulation than ourselves; and we trust that, should the experiment prove, as we fear it will, to be signally disastrous, we shall be found honestly willing to mitigate the lot of the sufferers, to the extent of our ability, and the full limit of our peculiar opportunities."

Boiler Iron.

A correspondent in this city writing to us about boiler iron says, "he agrees with us that boilers should be made of the best materials only, but how is this to be ascertained, who is to decide. One boiler maker prefers one manufacturer's iron, one prefers another's, for reasons which are connected with price and the management of their shops. Recently the manufacturers of iron of East Pennsylvania petitioned Congress that ro reduction be made on foreign boiler or railroad iron, because anthracite coal could only be profitably used in the fabrication of nails, in other words, "that cold and hot short iron was the consequence of the combination of their ores and fuel ?"' Our correspondent therefore suggests that in every case of explosion there should be an enquiry made into the quality of the boiler iron, who was its maker, where it came from, of what ores it was made and by what process, Facts thus obtained, he thinks, if carefully collected, would enable us to determine how to prevent Coroner's inquests, and save a vast deal of life. It is perfectly absurd, he thinks, to call twelve men together to say a man was scalded, and that the explosion was caused by a flaw which could not have been detected when the boiler was making. They should ask, who made the iron, who sold it, what was its price, \&c. With these views we pertectly agree. The best makers of iron sometimes manufacture poor qualities
of it. They should be taught by exposure not or it. They should be
to sell a poor quality.

Art.

Engraving of Henry Clay.-Here we have before us a real likeness of Henry Clay ustissued by Bachia \& Co., engraved by A H. Ritchie, the eminent engraver in our city. The great orator is represented as delivering one of those impassioned speeches which so often made the hearts of thousands throb, and the Senate walls to vibrate. It is altogether the finest likeness of the great Kentuckian ever produced :-the head is fine; the eye ac tually gleams with life and genius. The ad mirers of Henry Clay will esteem it a privi lege to possess such a likeness.
Photograph of the Moon.-We have befre us a photograph of the Moon and anothe of the Boston Custom House, taken with the large equatorial telescope at Cambridge Ob servatory, by John A. Whipple, Daguerreoty pist, No. 6 Washington st. Boston Custom House is very fine-it is well done. The one of the Moonis an object of curiosity, and is deeply interesting to the lovers of science. The surface of the Moon is peculiarly striking. It looks as if it were covered, in some parts with huge rocks, lying thick as hailstones after a storm. These pictures are an evidence of the chemical action of light independent o heat.

Hydrophobia Cures.

The following is a cure given by a gentleman in a French paper, which he asserts has been used in France for two centuries, with success, and within the last ten years; he says "I have used it in twenty cases, and alway with entire success." This entitles the thing to an experiment ; and, certainly, there are enough outre ingredients in the compound to ensure a chance of efficacy among some ot them. Here is the recipe :-
Wash the wound, while recent, and the adjoining parts with cow's milk, boiled hot, dail_{y}, for nine days; for the same length of time, each morning before breakfast, drink a tum. bler of the following potion, lukewarm :

Gramme (15.4 grs . Troy)

Root of Angeline

Root of Gentian
Venetian Theriac
Assafertida, " well crushed"
Oyster Shell
Root of the Sweet Briar
Scorzonera, the root unpeeled
Rue, fresh stems, a good handful
Sage, cut up finely
Marine salt
A heal of garlic, crushed
Three heads of leeks, with their leaves Two small onions
A few spring daisies
Boil these together in a close vessel, with three quarts of good red wine, until one half be evaporated. Strain the liquid and put in a bottle with a ground stopper, and use as directed. The dose for a child should be diminished in proportion to age.
This is the remedy of M. Bee, Senior schoolmaster, who begs the publisher of the Echo to give it to the world as a sovereign preventive of a fearful malady, and a cure for it in its earlier stages. As the constituents are all attainable without difficulty, there can be no peril in trying it, as every other specific has proved valueless.
The following is another receipt given by a French physician :-

Take two table spoonsful of fresh chloride f lime, in powder, mix it with half a pint of water, and with this wash keep the wound constantly bathed and frequently renewed. The chlorine gas possesses the power of decomposing the tremendous poison, and renders mild and harmless that venom against whose resistlesss attack the artillery of science has been so long directed in vain. It is unnecessary to add that this wash should be applied as soon as possible atter the infliction of the bite. From 1810 to 1824, the number of persons admitted into the Breslau hospital was 184 , ot whom only two died. 1783 to 1824, into the hospital of Zu.rich, 222 persons
bitten by different animals, were admitted, bitten by different animals, were adm
[We can say nothing of the first receipt;
the last receipt is a good one, if applied immediately after the person is bitten; but if the poison has got into the system and is working in it, we do not see what good it can do at all. It $1 s$, however, a good wash for putrid sores. We have known of it being used successfully for a bad festered wound from the bite of a dog.

Climate of Oregon.

The Portland Oregonian of A pril 24th ives the following very alluring account o the climate of Oregon :-
"In looking over the papers from the Atlantic States, one would be led to suppose from the accounts given of the intense coldness of the weather the past winter, that there must be some mistake in the geographical position sustained by the Atlantic States towards their sister territory here, on the Pacific. While the mercury in the thermometer
has become frozen there, we, in Oregon, in has become frozen there, we, in Oregon, in a
latitude as far to the north as any of those latitude as far to the north as any of those tates, have been enjoying the mildness of ere during part of the months of Januar and February, actually reminding us of May weather in New York.
While the ground here has been covered with green giass and gaudy fiowers through the winter, there it has been mantled with several feet of snow. On the 20th of January last, a triend sent us a cluster of ripe strawberries, picked on the plains, where they grow spontaneously. They have been in blossom all over the plains during the whole A pplegate, of Umpqua, sent us a great variety of wild flowers, and several specimens of grass, ther. growing as green and fresh as in June, some blades of which were eighteen inches in length. And this reminds us that while the cattle of our Atlantic friends have been freezing to death in their stalls and sheds, ours have been roaming at large over our plains-unfed, save from nature's granaryand when slaughtered, would make a New York butcher put on his broadest, proudest grin, to think himself the happy vender of such delicious beef."

Rallway Accidents in England. The returns relating to railway accidents in Great Britain, for the half year ending December 31,1851 , hav \in just been published.
The number of passengers carried was $47,509,-$ The number of passengers carried was 47,509,-
392 ; the number killed was 113 ; injured, 264 . 392 ; the number killed was 113 ; injured, 264 . Eight passsengers were killed, and 213 injured from causes beyond their control; 9 passenown misconduct or want of caution; 32 servants of the companies or contractors we killed and 11 injured, owing to their own want of caution; 32 trespassers and other persons, neither passengers nor servants of the company, were killed, and 6 injured, by crossing or walking on railways. The length of railways in operation was 6,800.

Singular Invention.

We see it stated in our Western exchanges, that a gentleman near Louisville, Ky., has applied the telegraph to an entirely novel and unique use. He has nearly completed an invention tor writing music as it is played from the piano-forte, the notes upon the sheets being produced as fast and to the exact time, as the keys are touched by the performer. . Strakosch has offered him $\$ 10,000$ for the patent right when the model is finished.
That this can be done is nothing strange, we think, for a patent was taken out by Bain to play on musical instruments by telegraph, but we do not see what benefits can be derived from such an invention.

The Ginger of Commerce
The ginger of commerce is the produce of a plant growing in both the East and West Indies. In its appearance it resembles a reed. but the stems arise from a root similar to the oot of the garden sweet flag, or iris. Like the root of this flower, that of the ginger plant preads and increases in size every year. rom the upper surface of the ginger root arises, in the spring, a green reed-like stalk, about the plant, which are white and lilac, we employ on a separate stem. The ginger e employ as a spice is the root, to obtain
same way potatoes are, and when the stalks have withered, the roots are dug up. The best and soundest of them are selected, scraped quite clean, and carefully dried in the sun, when they are ready for exportation, and use. The inferior roots are scalded in boiling water instead of being scraped; and, these, when dried, form what is called black ginger , a very inferior kind. The color of black ginger, as it is termed, is yellowish grey on the outside, and orange brown within. In shape it is thick and knotty. The best or white ginger, being scraped in preparing it, is less in size ot being so thick or knotty; its color is of a ight yellow, and its taste is much more punent and aromatic than that of the black kind. Much of the ginger root that is now sold by druggists is of a beautiful white appearance; this is done by bleaching it. No good, but evil, is the result of this process, all for the sake of appearances.

silver and Gold.

The London Times gives some elaborate tables concerning the comparative production fold and silver, for the last few years. From these tables it appears that the produce of gold in the world rose from $114,674 \mathrm{lb}$. in 846 , to 365.950 lb ., in 1850 . In those five years the increase was at the rate of 219 per ent., while silver only increased rom $1,979,-$ 84 lb . in 1846 , to $2,663,386 \mathrm{lb}$. in 1850 , or $34 \frac{1}{2}$ $34 \cdot 5$) per cent. The former metal was in 1850, therefore, apparently increasing at the rate of 44 (438) per cent. per annum, and he latter at 7 (69) per cent.
The following is the estimated produce of the precious metals, in tons, in 1801, 1846, 1850,1851 , and the probable amount of 1852 .

Gold Silver.
Tons. Tons.

180119856 , or 1 lb . of gold to 45 lb . of S . $84642 \quad 727, \quad$ " 17 lb . | 1850 | 134 | 978, | " |
| ---: | ---: | ---: | ---: |
| 1851 | 180 | 1002, | " lb. |
| | 5 lb. | | | 8522421027

1027,

Parker's Wheel.

The people in New Hampshire are determined to test the claims of Parker's Patent by an actionat law, before they pay any taxes. No one can find fault with this, if too much is claimed by the plaintiffs. Pay Mr. Parker hisjust rights, gentlemen, but no more; if you do not infringe his patent you have no right to pay him ; if you do, in good justice he should be paid; the right must first be established, and we hope the law-suit will be conducted openly, plainly, and candidly, without great counsel or much expense, so as to do justice-find out the rights of both parties.

Farming in Big Style.

Mr. Mechie, of Tiptree Hall, England, the same gentleman on whose farm McCormicks Reaper accomplished its great triumph, goes into farming in a style altogether surprising to us here. In a letter to the London Times he says:-
"It may be interesting to some of your agricultural readers to know that my 'irrigation by subterranean iron pipes with hose and jet, worked by steam power,' is completed on 170 acres. It is not necessary here to enter into details: suffice it to say that the cost, independent of steam engine, is $£ 315 \mathrm{~s}$., ($\$ 18$ 18) per acre, added, as it were, to the fee simple of the estate. The working cost of conveying and applying to each acre 15 tons of liquid manure, or water, equivalent to a heavy rain of five hours' duration, is about 1 s . 6 d . per acre. The liquid is distributed through a fan like gutta percha spreader, issuing as a broad, thin, glassy sheet, and descending in heavy drops like a thunder shower. I may be thought rather speculative when I anticipate that within a century from this period the sewerage from ourcities and towns will follow our lines of railway in gigantic arterial tubes, from which diverging veins will convey to the eager and distant farmer the very essence of the meat and bread which he produced at so much cost. We shall then no longer commit the folly of wasting our own manures, to replace them, at an enormous cost, by importations of bird's dung from the Pacific."
Here we have an instance of a farmer expending more than eighteen dollars on every

