

Reported Officially for the Scientific American
LIST OF PATENT CLAIMS Insued from the United States Patent off
for the weri exding Max 4, 1852
for the weer en

 without noise or arr,
stantially as described.

Porato Waskr rs-By Alonzo Bentley, of Hones-
dale, Pa:: I claim the screen and cylidaerer combined, the sereen working within the cylinder, and its axis
or shaft working within or through the tubular pro. or staift working within or through the tubular pro-
jections or bearings of the same, substantially as
set forth set forth.

 ratspg, ing ing esinge. The
in the manner described.
Wh Lsive MACHiNES-By Christr. Hollinggmorth,

 means of which a 1 in
ing surface is prese
clo to be washed.

 ssection than the bar on which it slides, in combina-
tion with the sring therien and the sere thereto
tita tion with the spring therein and the sereer thereto
attachod the wiolit constracted and operating sub-
stantially in the manner and for the purpose de-
cribed

 escape pipe, constructed and operating sulvstantianly
ens set forth as set forth.
 the radial bar turning loosely on the brake lever
shaft of the tender or for ward ana and dpring for en-
abling the brakeman to
operate the brate of the
 ing set, as deseribed.

 the same by the introduction of water or ot ot her fluid
into hat azid cavity Hinte the faces of the azid an-
vils are undergoing the process of tempering.

required
scribec.
$\substack{\text { Cincond }}$

 the perprospery ort forth.
Third, Iclaim con
Third, I Leaim connecting the carriage and the ta-
ble fhich cary the knife, with the roller receiving
onotion froath ble which carry the knife, with the roller receiving
motiton from the sone by means of the combination

 is set forth.

Fowsels-By Curisten Schneider, of Washington,
D. $\mathrm{C}:$. claim the measuring funnel, constructed

 Claia, frst, the combination of two grind astones, or
theire eruivalents. rovolving in the direction made
known for the purpese of

${ }^{s}$

 the machine for the purposes set forth, without in-
terfering with the automatic traversing motion which

 Fourth, the arrangement in the eame machine of
two sets of reiprocating framet, either of which can

 lightning rod or three or more metals, encased on
within another, the most fusible to the outside, in order to prevent the destruction of the entire point
melting from an overcharge of the electric fluid.
 auger shaft in swininisg arms or gates of of dififrent
lengths, hung on centres, said centres being in line, so that by moving the said swinging arms or or gates
nearer to or further from from a position at rimb
ngles to the the

 and wire hole prickers, in the manner substantially
asd dosiribe, for the purpose of boring the mor tises
in the silats, and pricking the wire holes in the rods, and ensuring the distances between the mortises and ame throughout.
made in three parts, titiprocating slat table, or bed bat

 tirely, to each othere, for the purposeo of tenoning or
turning down the pivots on both ends of slats of various lengths.
Fourth, I cla
Fourth, I claim pricking the wire holes in the slat
and feeding them at proper intervals from the box and feeding them at proper intervalas from the box in
which the are ontained, to the bod or tale pon
which the gare tenoned. by means of a vibrating

Spearing TVbBS-By T. J. Woolcocks \& Wm. Os.
trander, of New York City: We claim the combina-

Ventilation Lights.

The free circulation of the air is only second importance to that of the blood, and our partments of all kinds must first be well ventilated, to well ventilate our lungs. In the open air, our respiration is free, and ventilation is only the same freedom extended to our apartments. To effect a free and full ventilation on a simple plan, at a small expense, and universally applicable, I have invented the
"Ventilation Lights." Where light. also, is wanted, they may be made of transparent glass, and where air only, they may be made of colored glass, earthen, china ware or meral. They can be made plain like comm panes of glass, or more or less hemispherical
and ornamental. In both forms they are to be uniformly or partially perforated with minute air-holes or pores, of a size sufficient for the free passage of the air, and yet to exclude dust and rain. These air-holes may be distributed unitormly or in artistic groups, and left unbed on one or both sides, or they may be fastened in the sash, like common glass; while, if they be hemispherical, they must terminate in a plane base or circularrim, so as to fasten like plain ones. These lights, of either form, can be made of different sizes and patterns, and when broken can be replaced by new ones. The minute air-holes act dhe same part to our apartments as our pores
do to our own system, and are quite as neces sary for the free and healthy circulation of the air in our lungs and the blood in our arteries and veins. Like our pores, they must also be kept open and clean. The greater the sphericity of the lights, the more holes there may be, and a greater column of air in capillary currents can pass and repass. In the plain form, this column can not overgo half the area of the light, while in the spherical form it can equal it, owing to the enlarged surface. The
greater the spheroidity and thickness of the lights, and the uniform size of the air-7oles the better they will ward out dust and -gain. In order to stop the ventilation at pleasure, perforated and fixed lights may be permanent-
ly attached to the outside of the sash, and un-
perforated and opening and closing ones on the inside. The outsiders will act as ventilators, and the insiders as anti-ventilators. These
ights may be cast with theirair-holes, or they may be first made and then have the holes etched in by fluorine. My plan of universal ventilation in short, is the substitution in part or entirely of plain or'hemispherical panes glass, minutely perforated with capillary airholes, in place of unpertorated ones, which en-
tirely forbid it. Another plan for tree ventilation, and universally applicable, by a little alteration in common sash, and the fixed position of the lights without their being perforated, is this,-let the tops of the lights in a sash to the depned inward, more or less according bottoms remain, as usually fastened, near the outside ; or whatever may be the depth of the sash frame, let the tops of the inclined lights extend as far to the inside as their bottoms do to the outside. When the lights are thus ar ranged, a window will appear like a surface formed of glass-wedges. Thus the sash where the lights are attached, and between them, let small air-holes be made or air-tubes inserted for the air to pass and re-pass freely. Fo lights which are.stationary, as in buildings, and for those steamboats, \&c., the sides which are next to the moving power, are inclined inward towards the inside of the sash. These inclined lights act as shields to ward off dust, \&c., while the off-sets they form at their junction in the sash, serve for ventilation when properly perforated. By thus inclining the lights and perforating the sash where they off-set from a common plane, the air can pass and repass freely either way, and thus subserve the interests of health and the prospects of long life.

,

[We are glad to direct attention at all times to the importance of ventilation, and the plan suggested by Mr. Strait, we hope, will meet with public favor. In 1847, Dr. Robert Bowie, of London, registered what was termed "The Glass Ventilating Pane;" it consisted in drilling a number of holes in a pane of glass in an oblique direction, the perforations being inclined upwards towards the ceiling inside.[Ed.

Resemblance of Lords and Savages.
There is often, in fact, no material difference between the enjoyments of the highest ranks
and those of the rudest stages of society. If the life of many young English noblemen and an Iroquois in the forest; or an Arab in the desert, are compared, it will be found that their real sources of happiness are nearly the same. The treasures of science, the refinements of taste, the luxuries of wealth, are in many cases disregarded or forgotten, and the excitation of life depends on the destruction of wild animals, or the management of impetuous steeds. This is a fact which is a matter of daily observation; and it furnishes a most instructive lesson as to the proportion established by nature between the active and speculative part of mankind. The great majority in ing hass of society are incapable of receiv cal excitestins from any source but from physiand other supposition, will necessarily fail. Nor is it without good reason that nature has established this disproportion between the studious and active parts of the species. The great mass of undertakings essential to the existence and the welfare of mankind, depend on physical exertion; and unless the greater part of our fellow-creatures were disposed to that species of labor, and gratified with the enjoyments that attend it, the race would speedily perish,and the speculations of science disappear with the individuals who tormed them.-LAllison.

Grave of an Ancient Sea King
A remarkable discovery has lately been made in the parish of Borre, near Horten, in Norway. In a shippon (barrow in the shape of a ship) has been discovered the unconsumod part. of a vassel, tagether with the skeletons of three hareef, two dogs, a sword-dagger, battle-axe, the foot of a glass goblet, a
bell with curious ornaments of bronze, stir-
rups, the bit of a bridje with silver mountings, the remains of a saddle (a saddle-bow of
bronze), and other objects. This cairn has probably held the corpse of King Eystein, or his son, King Halfdan, who, according to Snorro, lie buried here.

For the Bcientife American.

Compensation Pendulums
A great deal has been written on the subject of compensation pendulums by men of acknowledged scientific attainments. Much expense has been incurred in constructing them, with a view to obviate the difficulties arising from the expansion and contraction of the material used, occasioned by the variations of temperature. It is unnecessary to say anything in reference to the merits of the different kinds that have been used, as all who feel any interest in the subject have an opportunity to become familiar with the various plans in use. It is strange, however, that the simplest, the cheapest, and unquestionably the best construction for a compensation pendulum, should remain almost entirely unused. The following is a description of one that a clock-maker in Cadiz, Ohio, made for me, and perfection.
Let a wooden support be erected immediately behind and at the same height of the pendulum's ball. Into this support place a rod of the same size, material, and length of the pendulum rod; extend it upwards, say three-quarters of an inch behind the pendulum rod, through a hole in the piece of metal on which the pendulum is usually suspended;
bend three-quarters of an inch of the top of the rod at right angles outward, suspend the pendulum in the end of this rod, and let it pass through the usual slit also. Now it is quite obvious that if the wire on which the pendulum is suspended, expands an eighth of an inch, it will raise the upper end of the pendulum rod an eighth of an irch, as it is only permanently fastened at the lower end, and moves easily through the whole above. But the pendulum rod being composed of the same material, expands an eighth of an inch at the same time, and thus keeps the ball at the same distance from the centre of motion. It is probable that this suggestion may be of use.

Putnam, Ohio.
Wit. E. Lukens.
Petition for Extension of a Patent.
On the petition of Abram Van Order, of Ithaca, N. Y., praying for the extension of a patent granted to him, on the 17th of July 1838, for an improvement in boilers tor steam engines, \&c., for seven years from the expiration of said patent, which takes place on the seventeenth day of July, eighteen hundred and fifty-two.
It is ordered that the said petition be heard at the Patent Office on Monday the 12th of July, 1852 at 12 o'clock x .; and all persons are notified to appear and show cause, if any they have, why said petition ought not to be granted.
Persons opposing the extension are required to file in the Patent Office their objections, specifically set forth in writing, at least twenty days before the day of hearing; all testimony filed by either party to be used at the said hearing, must be taken and transmitted in ac-
cordance with the rules of the office, which will be furnished on application.

Thos. Ewbank, Com. of Patents.
Washington, 1852.
Cochineal Raised in Europe.
At a meeting of the British Entomological Society, held at London on the 5th ult., we notice that the President, J. O. Westwood, Esq., presented specimens of the so-called "new cochineal insect, Coccus Fabæ," which, it appears, feeds on the common bean and yields a most brilliant color, in all respects resembling the cochineal of Central America. Mr. W. stated that the cultivation of the insect had been commenced on a large scale in the south of France, where it would supply a new and profitable opening to the labor of
the peasantry. the peasantry.
To make grass grow under trees, it is only necessary to water it frequently with a weak solution of the nitrate of soda. This is a most excellent substance to make grass grow in fields. Care must be taken to sow it.in small quantities in wet weather.

