

Reported Officially for the Scientific American LIST OF PATENT CLAIMS Inaued from the United states Patent Of for the wrik beding Mabci 30,1862

 spring seraper, oper
purposese set forth.
Mill for Qrinding Ores-By Wm. Ball, of Chi-
copee, Mass.: I claim the combination and arrangecopee, Mass. : I claim the combination and arrange-
ment of the two grinding or pulverizing wheels, one or two endless screws, and the troughs which such
wheels and screws revole in, all made and applied
wh wheels and screws revolve in, all made and applied
so as to operate together, in such manner as to raise
the ore up and crush it between the two wheels, and the ore up and crush it between the two wheels, and
not only return or move the heavier or too weimhty
particles, towards or back to the wheld, but allow
the liehter ores or suficientl particles, towards or back to the wheels,
the lighter ones, or sufficiently reduced
flow out of the machine, as described.
Excarating Machines-By Charles Bishop, of
Norwalk, $0 .: 1$ Io not claim inclining the cutter cyNorwalk, o: I do not claim inclining the cutter cy-
linder; neither do I claim placing the horses within
or upon ditching machines, for the purpose of work or upon ditching machines, for the purpose of work
ing them but I claim constructing the inclined
wheel, or cutting cylinder that it is made also to where the purpose of horse-walk, by which means
serve the purn
the power of he horse is applied directlg to the cy-
linder itself, without the intervention of other me. the power of the horse is applied direct
linder itself, without the intervention
chanism, substantially as described.
Trusses-By F. M. Butler, of New York City : I
claim the application of trusses and supporters of
the guard spring pad, as described.
 N. Y.: I claim the movable stop which determines
the position of the screw blanks between the jaws,
and then returns, to let said blanks fall through, substantially as specified, in combination with the
vertical hollow spinde or mandrel, an specified vertical hollow spindle or mandrel, as specified.
And, fnaily, I claim the feeding tube which conAnd, finaily, I claim the feeding tube which con-
ductsthe screw blank, \&c., to the hollow spindle,
substantially as specified, in combination with the substantially as specified, in combination with the
cam on the cutter head, or itw equivalent, for mo-
ving the said tube out of the way of the cutter, as Razor STRops-By John Demerit, of Montpelier,
Vt. I I claim the mode of attaching the strop to the
case, so that it will not be soiled by the faces of it case, so that it will not be soiled by the faces of it
coming in contact with the case, and so that it will
revolve, as described, using for that purpose the revolve, as described, using for that purpose the
aforesaid case, strop, bearing spring, and pivots, in
combination.
combination.
Dredging Machines-By
New York City : patented in
France
Dew York City : patented in Yrance Dec. 16, 1s45:
Ido not limit mpesfl to the mans described, for
raising and lowering the frame, nor to the shapes of raising and lowering the frame, nor to the shapes of
the shovels or scoops, or the means of moving them,
as other mechanical means shapes, or arrangements as other mechanical means, shapes, or arrangements
may be used, neither do I limit myself in the num-
ber of the shovets or scoops, or the proportions of ber of the shovels or scoops, or the proportions of
the parts
First, I claim the shovels or scoops, forming the First, I claim the shovels or scoops, forming the
bottoms of compartmeats in in a proper frame, and
moving at one end on a hinge, or similar contrivance moving at one end on a hinge, or similar contrivance
the other end being lowered to cause the sooop as
the frame is moved along to collect the sand, mud, the frame is moved along, to collect the sand, mud,
or other material operated on, and retain the mame
by suitable mechanical means, operating to lift the sy suitable mechanical means, operating
scoop and close the bottom, as described.
RICE II ILLERS-By Peter McKinlay, of Charles-
ton, \&. C. I claim the combination of the concave
futed chambers, with the smooth curved, radial ton, 8. C.: I claim the combination of
futted chambers, with the smooth c
beaters, for hulling rice, as set forth.
SHovel PLows-By W. Fagett, of Stone Bridge,
Va. I I claim the constrution of the handles, and
the principle or mode of shifting the same as descrithe principle or mode of shifting the same as descri-
bed, with their operation, the invention of the com-
mon shovel plow is of course disclaimed bed, with their operation, the insention of
mon shovel plow is of course disclaimed.
Electricic Whaling Apparatus-By Dr. Albert
Sonnenburg \& Philipp Rechten, of Bremen, GermaSonnenburg \& Philipp Rechten, of Bremen, Germa-
ny (assignors. to Christian A. Hanakaken, of the Uni-
tep States): We claim the application of electric galvanic current, conveged by a conductor, to an in-
strument which is to be thrown intosperm and right
whales, as well as other animals of the sea, in order
to secure them. to secure them.
[This invention has been proposel to uas a number
of times within five years; it can never be made to of times within five yea
operate-never.-En.]
operate-never--ED.]
GANG PJows.-By Harvey Killam \& G. Valleau,
of Scottsville, N. \mathbf{Y} :We claim mounting the tongue of Scottsville, N.Y Y We claim mounting the tongue
or pole upon the timbers, and uniting the same by
an intermediate jointed connecting rod, to the horian intermediate jointed connecting roo, to the hori-
zontal coupling rod which unites the front and rear-
ward ends of the pivotted arms of the axles, whereby ward ends of the pivotted arms of the as ies, whereby
the direction or guiding of the gang of plows is reva-
lated by the action of the team itself, in moving in lated by the action of the team istelf, in moving in
any direction the attendant may require.
We also claim confining the tongue or pole beWe also claim connining the tongue or pole be--
tween the horizontal plate and timber, by peans of
a fulcrum bolt, for the purpose of allowing the a fulcrum bolt, for the purpose of allowing the
tongue or pole to ribrate or move right or lett, with
the direction of the team, whereby the required ditongue or poe to vibrate or move right or fet, with
the direction of the team, whereby the required di-
rection tiven to the propeling and esupporting
whels, and whereby the tongue or pole may be
shifted or wheels, and whereby the tongue or pole may be
shifted or adjusted in its position, to accommodate
two or tlire horse two or three ho
with the plows.
BEDSTEAD FASTENINGS-By Wm. Shaw, of Cla-
rion, Pa: I claim the combined action, or the com-
binations of the link and wedge, as described, for fasrion, $\mathrm{Pa}:$ I claim the combined actions, or the com-
binations of the link and wedge, as described, for fas-
tening bedsteads. Rat Traps-By James Sheward, of Somerset, 0
I claim the manner of constructing a machine form the killing of animals and throwing their bodies
fromithe trap, and self-setting the same, sabstantialfronithe trap,
ly as described.
 spring or brace, of descrisibgton, or its equivalent, with
the twisted flat bar, or other device, turning syste-
matically the borin me twised frat bar, or other device, turning syste-
matically the boring instrument, whibist uning a rope
intead of rods, while sinking a bore-hole in the
earth, in search of water or minerals.
Smoorming Irons-By Nicholas Taliaferro, of Au-
gusta, Ky., and Wm. DC Cummings, of Murphysille,
Ky.: We claim the application, substantially as de gusta, Ky., and Wm. D. Cummings, of Murphysville,
Ky . We claim the application, shbstantially as de.
seribed, to a self-heating smoothing iron, or a tube
or chamber, at the bottom of the fire box, provided
with a registered mouth or inlet some distance above
the bottom and at its lower portion, with distributing with a registered mouth or inlet some distance above
the botton and at its lower portion, with distributing
apertures communicating with the fire, whereby the apertures communicating with the fire, whereby the
draft is aplied from beneath and equally at every
part, and placed under the control oo the operator, part and placed under the control of the
without permiting the escape of ashes or
fise of con without permitting
fuse of combustion
Candy Wicss-By C. A Wortendyke, of God-
winille, N. J. : I claim a candle wick manufactured
as described.
 Mowser.Proor Lock-By Nom. IIall, of Boston,
Mass. Patented oriminaly Aug. 1, 1844 : I claim
the combination of the handle, shank, and cam, one or more pins, etc., and their sustaining holes or aper
tures, in their aplication to the bot and one or
more tumblers and as ond more tumblers, and as operated, substantially as
specified, meaning to claim said combination, as
composed of the afore described elements and their composed of the afore described elements and their
accessories.
And I also claim to combine with, accessories.
And Γ also claim to combine with, or in combina-
tion with the bolt and tumblers, a contrivance for tion with the bolt and tumblers, a contrivance for
throwing or moving the bolt back and forth; ano-
ther, or a key separate and distinct from such con ther, or a key separate and distinct from such con-
trivance and for the eurpose of moorig the tumblers
into into correct positions for the bolt to be moved, and
which shall be perfectly stationary after it has so
moved the tumblers, and a movable plate. orits equimoved the tumblers, and a movable plate. orits equi-
valent, applied to the contrivance, by which the bolt valent, applied to the contrivance, by which the bolt
is actuatea and made entirely to cover the key, and
prevent accessto it when the bolt is put in motionnot meaning by the above to claim the separate com-
bination of either of the abore mentioned three
parts, with the bolt and tumblers, but intending to parts, with the bolt and tumblers, but intending to
limitit my claim to the combination of all of them
therewith so as operate in conjunction with them;
essentially as specifed. SEED PLunter-By M. J. Hunt, of Rising Sun,
Md. Originally patented June 3, , SS51: What Iclaim
is, in combination with the slotted, sliding seed bar, is, in combination with the slotted, sliding seed bar,
the stationary lugson the plate, and the concave on
the cap, the whole being arranged and constructed as the sap, the
described.
1 also claim the combination and arrangement
the double bolt, with its slotted arm, rock shaf with its arms and pitman, for the double purpose of
giving motion to the feeding apparatus, and also re.
gulating tio giving motion to the feeding apparatus, and also re-
gulating the quantity of seed to be sown, when said
pitman is operated by a long crank upon which it pitmanels, as shown.
trated

Cooking Stove-By SESM. Carpenter, of Erie, Pa

Tenacity of Life in Insect

However usefulinsects may be in the genethe fonomy of nature, it is but too true that pest, and gardeners often find them a pages of agricultural journals abound with remedies, offensive and defensive, against the obnoxious invaders. In such cases, it becomes desirable to know what remedial means are the most efficacious, and we are glad to
find that the question has been taken up by persons competent to discuss it. Among these, Dr. J. Davy, of England, has given Effects of certain A has just béen published in the Transactions of the Entomological Society, and is well worth reproduction in a condensed form. The the season, as will be remembered, being so mild that insects were readily met with Their objects were three-fold-to test the et fects of temperature, of gases, and of vapors. In the former, recourse was had to extremes of heat and cold. A bee placed in a temperature of 32° became at first more active, but register-thermometer showing as if dead had been the lowest temperature during the night. Transferred to a temperature of 52° the bee revived in half an hour, and on the following day exhibited the same results under the same conditions. A fly which, on December 8 , was lively on the wing, in a temperature of 52° in-doors, was disinclined to move at 40°; and still more so, stirring only when touched, at 33°, but did not become torpid, as in the case of the bee, even at 23°, igns of life being distinctly visible. Several all gave the same result-a remarkable power of sustaining life. The method adopted was to enclose the insects in a glass tube, and place them out of doors all night; and though the tube was frequently covered with frost, they
soon revived in a warm temperature of a room. It is scarcely possible to estimate the degree of cold which insect life will bear without destruction, since many of these creatures survive the terrible winters of the arctic regions. Still, a knowledge of the effects of reduction of temperature will be valuable, as affording data by which to judge of the effects and probable duration of visitations of insects, and of the nature of the precautionary measures to be adopted. In an experiment of alternate temperature from 40° to 65°, tried for five days on a bee, the creature at last "ceased give any sign of vitality."
The influence of heat appears to be much more rapid than that of cold; a fly exposed a temperature of 120°, died in two or three
minutes; and 113° proved fatal to another
while a third, placed in a temperature increased gradually to 96°, remained alive for more than an hour. Others bore from 80° to 90° for two hours; and in one instance, a fly survived from 86° to 100° for several hours, but became uneasy with a slight rise, and died at 1050. A bee, taken on March 15, from a temperature of 45°, was exposed to 80° with out any apparent diminution of activity; a 90° it ceased to buzz; and at 96°, ceased al together to move, and did not revive. Although these results are too few to enable us to determine the laws with respect to the influence of temperature on insects; they may serve a purpose, in showing that the effect is not that gradual one of hybernation, where activity and torpor succeed each other but slowly.
In the series of experiments with gas, it was found that flies placed in carbonic acid gas became instantly motionless, and died if left for any length of time. Some revived after an hour's immersion; others, after two proportion to the time of exposure to the gas. Some what similar results were obtained with flies and bees in hydrogen and azote. To try the effect of deprivation, a fly was shut up in a tube with but a small quantity of common air, on the 5th February, in a temperature va-
rying from 52° to 60° during the whole time rying from 52^{∞} to 60° during the whole time
of the experiment. The insect manif ested no uneasiness until the 25th day, and was found dead on the 28th. Another fly, enclosed in a similar tube, with a quantity of air not more than a few times its own vgume, became languid on the second day, and motionless on
twelfth, but revived on being taken out.
Flies immersed in oxygen were found dead the second day, with a diminution of the quantity of the gas. Coal-gas produced almost immediate insensibility, with a few feeble attempts at revival, but in no case effectual. Sulphuretted hydrogen also proved especially fatal-an instant's immersion was sufficient to destroy life; though withdrawn at once, not one of the flies recovered. It was the same when the portion of gas diffused in the air of the tube was so minute as to be scarcely appreciable. On bees, too, the effect was simi-
lar; the deadly nature of the gas on their deicate organization being invariably destructive. Like results were obtained with chlotive.
rine.

In the class of vapors, ammonia proved fatal in one case, and harmless in another; muriatic acid stupified in two, and killed in twen-ty-four hours. The vapor of nitric acid was equally fatal with sulphuretted hydrogen and, in alcoholic vapor, at a temperature of 74°, for a few minutes the fly showed increased activity; in a few more; it became motionless; after about a quarter of an hour, it appeared to be torpid. Now, expossed to the air of the room, in a few minutes a slight motion or its feet was seen; after a couple of hours, it was learly as active as before the experiment; two hours later, it was found dead. The same effects, with slight variations, wexe produced on other flies. With ther, cessation of motion was almost instan taneous, followed, however, by revivification except in one instance; brief immersion in chloroform did not prevent revival, but an exposure of eight minutes killed ; camphor and and turpentine were both fatal; with attar of roses, musk, or iodine, no ill effect was perptible.
The experiments with prussic acid are worthy the attention of entomologists, with whom it is often a matter of importance to kill an insect with the least possible amount of injury. In these instances, the plan pursued was to charge a small tube with the acid, and place it inside that containing the insects. The vapor of $1-16$ th of a grain was sufficient to destroy bees and flies; and that of seven grains proved fatal to large beetles, and the largest kind of bees. Although as yet the investigation has taken but a limited range, it will be seen that it opens a wide field of research; the next step will be to group or class those agents which appear to have produced
similar effects. It is remarkable, as Dr. Davy observes, "that most of the substances which, even ir. minute portions mixed with common air, prevent the slow combustion of
dark, have the effect on the insects on which they were tried, of suspending animation." He says further :-" Some of the results may not be undeserving notice for practical purpo-ses-as those in the instances of sulphuretted hydrogen, oil of turpentine, and camphor, in relation to the destruction of parasitical insects, whether infesting plants or minerals, or to the preservation of plants, of course it is necessary that the agents to be used should not exercise on them any materially injuribus effects. This must be determined by experiments made expressly for the purpose. The few trials yet made on seeds seem to show that the steeping them in a solution in water of sulphuretted hydrogen has not prevented their germination. The seeds tried were mignonette, cress-seed, and that of a Femophila; analogy-namely, that of steeping the seed of the cerealia in a solution of the white oxide of arsenic, is in favor of the same conclusion. Further, for the preservation of articles, whether of clothing or furniture, it is hardly less necessary that the substances to be employed should have no offensive odor. Judging from the effects of attar of roses, and from what we know of scented woods not being liable to be attacked by insects, the probability is, that any voletile oil of agreeable perfume will answer the purpose required, and prove a true instance of the utile et dulce combined.
As carbonic acid gas, and some of the other agents mentioned, produce merely a temporary torpor, it may be a question whether this gas, or simple immersion in water, may not be advantageously substituted for the fumes of burning sulphur, destructive of life, at the yearly gathering of honey; the former, indeed, may be said to be in use in the Levant, where the smoke of the fire of leaves, in which the carbonic acid generated may be considered as chiefly operative, is employed to stupify the bees preparatory to the spoiling of their hives."

Stages and Railroads---steạm Coaches.
A line of omnibusses has commenced to run between Jersey City and Newark, N. J.; the stages are new, and are to run inopposition to steamboats and railroads. Now a very important question arises here, "will these stages pay ?" the charge is to be only $12 \frac{1}{2}$ cents for nine miles; the same fare as the steamboats, and one half only of the railroad. We have a suggestion to make here, viz., that this road would be a most excellent one for testing the econonical value of steam coaches on plank roads. Here would be fair competition, and a fair test of the superiority or inferiority of stages to steam coaches. If the steam coach should prove successful, then we would be justly responsible for having taught and held wrong doctrine. We are willing to bide the result. Without a fair test-a contrasting test of the merits of steam coaches on common or plank roads, no person will be satisfied, and no one should be.

Railroad Accidents.

During the past year 90 lives were lost by railroad accidents in New York, and 50 were maimed and wounded; this is mentioned in the report of the State Engineer, which does not include the accidents on the Hudson River and Harlem Railroads. We have seen a statement in a number of our exchanges, wherein it is asserted that more accidents take place on the English than on the New England railroads. There must be some mistake about such assertions: it is not possible, with our New England system, to run as sate as in Eng. land, where no collision can take place except by one train running up behind and into another, a thing which has occurred only once or twice in a number of years.

Irish Peat.

The chemical operations of the Irish Peat Company, which commenced on the 8th of December, have been continued since that time. It is now stated that the results have steadily realized the calculations put forward, and the practicability of employing the waste gases for the purpose of fuel has also been fully demonstrated.
There are many peat bogs in the United States which will yet come into use. At present
them.

