STBNTRE MOEETLI

For the Scientific American

On the Forces.
In the Scientific American, No 13 and 14, there is a communication over the signature of H. R. Schetterly, which I think deserves some notice. The writer, inadvertently no doubt, has fallen into some errors of terms, if not of ideas. He remarks that "forces are either impulsive or constant, or both combined. An impulsive force puts a body in motion, and then lets it move by its own inertia." "A constant force continues to act upon the moving body after it has put it in motion, causing it to move faster and faster every moment; and this is called accelerated motion." Is not an impulsive force a constant force, causing accelerated motion, whilst it is acting ? How long must a force act to be a constant force? And how short a time to constitute it an impulsive force? Is not a constant force an impulsive force acting a longer time? I can conceive of no differcnce in forces, only so far as one acts with a greater less intensity, or a longer or shorter time than another. Multiply the time of action, by its intensity, into the mass acted on, and the velocity will result in all cases. There can be no motive force without time-it must have time to act; and although the length of time of its action be ever so short, yet it will be an accelerating force while in action; it will, during that time, move the body on which it acts with accelerated motion, from a state of rest, up to the velocity communicated. It is impossible to conceive of a force acting without time. If it acts during no time, it is no force.
I will pass by the inconsistency of calling the action of wind and water constant forces, instead of a succession of forces, and the statement that " when an impulsive and a constant force act on a body, conjointly and simultaneously, they produce curvilinear motion around the centre of the constant force," and leave the writer to start a vessel to sail around the wind, whilst I pass on to the errors which I at first took up my pen to correct.
After illustrating the central forces, by whirling a weight tied to one end of a string, while the other is held in the hand, around one's head, he remarks-" now, in the case of the string and weight, the impulse is communicated to the weight by the hand, and the momentum generated by this impulse in manifestly decomposed into the centrifugal force of the weight, and the force with which the weight would strike an obstacle in its orbit, and each of these two forces must therefore be less than the force which first moved the weight, because the sum of the two former is only equal to the latter." So Esq. Andrew's machine is no humbug after all! Mr. Schetterly has given him all he wants-a force equal to that with which a body in circular motion strikes. For I understand him to suppose that the centrifugal and striking forces are equal ; and, as the striking force will always equal the impulsive force, whatever the amount of the centrifugal force is, must be a clear gainwhich we hand over to esquire Andrews.
If the string should break whilst the weight was being whirled around the head, it would fly off from its orbit in a tangent, with a velocity equal to that with which it moved in its orbit, plus the centrifugal force. Will Mr. Schetterly estimate the plus, and pass it over to esquire Andrews? If the sun should lose its attractive force, and the earth fly from its orbit with a velocity increased by the centrifugal force; how much faster would it move than it now moves in its orbit? Not any; for there is no such force as centrifugal,-you can make nothing of it; for, if a body that is moving in a circle be let to fly off in a tangent, its velocity will be no greater, and it will strike with no greater force against a fixed obstacle, than when it was moving in a circle. What is termed centrifugal force is nothing more than the inertia of the moving mass; its resistance to having its course changed from a right line to a curve, by a centripetal force; and so long as the centripetal force acts laterally to its motion, or radial to the curve of its direction, it can neither retard nor accelerate it. It is somewhat strange that men, otherwise intelligent, should hold these notions; that men who are able to instruct persons in
the natural sciences, should, in some important things, err, and thus lead their followers astray
is unfortunate.
J. B. Conger.

Jackson, Tenur, Jan., 1852.

Steam and Fuel - The accompanying fig 21, represents the mode of obviating dense smoke, and tor using steam as a heat generator. It was invented by Mr. R. Evans, of
London, in 1824. A is an end view of the London, in 1824. A is an end view of the
boiler; \mathbf{B} is the internal fire-place contained in a large tube denoted by the dotted circle lines; \mathbf{C} is the ash-pit; d is a branch from the exhaust pipe of the steam engine ; f is the feeding tube, pierced with numerous small ittle jets, diffusing itself over the surfas in little jets, diffusing itself over the surface of through the fuel is decomposed. The fuel employed was coke, which gave off no flame except when the cock, e, was open and the steam used, when it gave off a flaree as represented by g. This apparatus was successfully used for at least five years in London, and upon a trial made by Mr. Evans, he found that it reduced the expense to aboutt one-half that which he incurred when using coal. Until he applied the exhaust steam he had to relin quish the use of coke, which of itselt as a fuel, was not able to raise enough of steam After he applied the steam, he had no trouble in raising a plentiful supply of steam, without an extra expense of fuel, A considerabl quantity of water was formed after passing to the chimney, by condensation, and this re quired a cistern at the bottom of the chimney to collect it. It was also observed that the grate bars were soon destroyed by oxidization. We regret to state that for want of a general knowledge of this invention, the same thing has been re-invented a number of times, no long since, in our country.
Furnace for Anthracite Coal.-When this kind offuel was but little known, and a little estimated, Mr. B. Howel, of Philadelphia, took out a patent in 1828 for boilers, the principle of which was to generate steam and use the anthracite without bringing it in contact with the boiler. He also claimed the application of the artificial blast, upon the anthracite, "to increase the intensity of the heat and giving it the necessary direction through the communicating flues of the furnace., The idea embraced in the invention, was t generate steam, the boiler being out of contact with the fire. He also claimed the plan fo heating kilns for making pottery and earthenware ; also for burning brick. A description of it will be found in the Franklin Journal of 1828.

A great number of patents have been taken out for furnaces, and the application of the heated products to useful purposes. It is but a short time since a case was tried in the U . S. Circuit Court, Philadelphia, the parties being Detmold versus Reeves, for the infringement of a patent of a foreign invention namely, the application of the heated products of smelting furnaces. A patent was secured by that veteran inventor Dr. E. Nott, many years ago for a like invention.
Smoke cannot be said to be a nuisance in this part of the world, for very little bituminous coal is used here; but there are other places in our country where the smoke consuming furnaces we have described and illustrated may be of great benefit. A great number of patent furnaces are described in "Galloway and Hebert's History and Pro
gress of the Steam Engine," Ure's Dic: tionary, and especially in the work of William West, chemist, of Leeds, Eng.

(Forthe Scientific Americun.) Galvanic Plating with Metals.

As your paper is the medium through which the public receive knowledge of nearly all the improvements in the arts and sciences at the present day, I have taken the liberty to make known a new and, said to be, valuable discovery in chemistry, for gold and silver plating, by one R. J. Huygens, a practical chemist.
Gold-For gold take $1 \frac{1}{2}$ pints rain water, dissolve one ounce of cyanide of potassium; when this is all dissolved, add 60 grains, or four bottles of chloride of gold and sodium,mix the compound well, and add 8 or 10 grains of carbonate of potash, and after it has settled it is ready for use. To use this it will be necessary to have a strip of zinc about $1-8$ th of an inch wide, and longer or shorter, according to the size of the article to be plated, and laid in the liquid so as to connect with the article : too much will blacken it.
8ILVER-Dissolve a twenty-five cent piece in an ounce of nitric acid by a gentle heat; addja quart of rain water, and throw in a large spoonful of salt; the silver will settle to the bottom. Carefully pour off the water and fill the vessel as before, again pouroff; continue this until you cannot taste salt or acid, and add an ounce of cyanide of potassium, and it is fit or use.
To Prepare German Silver for Plating. -Dissolve a five-cent piece in one-quarter of an ounce of nitric acid, and add three-quarters ot an ounce of water; add as much cream of tartar and alum (equal parts) as the water will dissolve; rub the article with this and dissolve at once.
L. A. Dunham.
[Many of the readers of our present volume -our new subscribers-may not be acquaint ed with the electrotype; or, like Mr. Dunham, may have heard of some such a person as Mr. Huygens having made the discovery. To those who are not acquainted with the electrotype, the above receipta fray be now, but all who desire to become acquainted with the best account of the art, should read Vol. 6, Scientific American-the articles by George Mathiot, the best Electrotypist in our coun-try.-Ed.

Old Time Winters.

The river Tiber used to be frozen over in the days of old.
In 1664 the cold was so intense, that the Thames was covered with ice sixty-one in thick. Almost all the birds perished.
In 1695 the cold was so excessive, that the famishing wolves entered Vienna and attacked beasts and even men. Many people in Germany were frozen to death in 1695, and 1696 was nearly as bad.
In 1709 occurred the famous winter called by distinction the "Cold Winter." All the lakes were frozen, and even the sea for several miles from the shore, The ground was frozen nine teet deep. Birds and beasts were struck dead in the fields, and men perished in their houses. In the south of France, the wine plantations were almost destroyed, nor have they yet recovered the fatal disaster The Adriatic sea was frozen, and even the Mediterranean, about Genoa; and the citron and orange groves suffered extremely in the finest parts of Italy.
In 1716 the winter was so intense tha people travelled across the Straits from Co_{0} penhagen to the province of Sema, Sweden. In 1726, in Scotland, multitudes of cattle and heep were buried in the snow.
In 1740 the winter was scarcely inferior to that of 1709. The snow lay ten feet deep in spain and Portugal. The Zuyder Zee was frozen over, and thousands of people went ove it All the lakes in England froze.
In 1744 the winter was very cold. Snow fell in Portugal to the depth of twenty-thre feet on a level.
In 1754 and 1755 the winters were very se vere and cold. In England the strongest ale, exposed to the air in a glass, was covered with ce one-eighth of an inch thick.
In 1771 the Elbe was frozen to the bottom
In 1776 the Danube bore ice five feet deep
below Vienna. Vast numbers of the feathere and finny tribe perished.

The winters of 1774 and 1775 were uncom monly severe, and during the Revolution cannons were drawn on the ice from this city to Jersey City.
From 1800 to 1812 also, the winters were remarkably cold, particularly the latter, in Russia, which proved so disastrous to the French army.
In the winter of 1819, heavy loaded teams used to cross between New York and Jersey City

Cost of Luxuries.
The aggregate value of wines imported into the United States, annually, is $\$ 2,000,000$ brandy, $\$ 3,000,000$; beer, $\$ 1,750,000$; snuff and segars, $\$ 1,750,000$; tea, $\$ 5,000,000$; coffee $\$ 12,000,000$; figs, almonds, raisins, \&c., \$1,000, 000 -total, $\$ 35,500,000$. What do those nations take in retnrn, from whom we import these articles? This is an important question.

Tunnel in the Hoosic Mountain
The rock through which the tunnel is being cut through the Hoosic Mountain, Vermont, is a soft mica slate and can easily be cut with a knife.

LITERARY NOTICES.
Perking' Plane Trigonometry, with Tables
of Logarithms-This is a new work by George R. Perkins, A. M., Principal of the State Normalschool
at Albany, and, as might be expected at Albany, and, as might be expected from his abili-
ties and high character, it is a most excellent and
able one. It treats of the application of Plane Tri able one. It treats of the application of Plane Tri-
gonometry to Mensuration and Land Survering; it
contains full Logarithmic Trigonometric tables ; and contains full Logarithmic Trigonome tric tables, and
one thing we liige about it it, that allthe figures in
the tables are in the old fashioned type the tables are in the old-fashioned type which adorns
our old friend Hutton; this type is not ro fatiguing
to the eye. We have had many inquiries about a good eork on Trigonometry, this inquiries about a
gy can hearti-
grecommend. It is published in excellent stele ly recommend. It is published in excellent style by
those great publishers, D. Appleton \& Co., New York
City. those
City.
Littele's Living Age-No. 404 of this work is a
capital number: "Mount Blanc," "Leaves from the capital number: "Mount Blanc," "Leaves from the
Note Book of a Naturalist," and a number of other
most excellent papers, are embraced within its inteNote Book of a
most excellent p
resting leaves.
Godey's Lady's Book, for February.-Some few months ago, in no niting a a number of this serial, we
stated our opinion that it did not come upto G stated our opinion that it did not come up to Godey's
usual excellence. usual excellence. This honest opinion, expressed
with kind felings towards the enterpise, was suff-
cient cause to cut us off from its repular monthly
 or 1wo exceptions), we have not Texeived a a copy.
The gentemany agent here, Messr. LDog \& Bro.,
43 Ann st, we do not charge with remissness. They
know we have always spoken well of the work and know we have al not charge with remissness. They
would gladly furnish us, if supplied of the work, and
mom the founwound gead.
tain himply
Simply because we receive the work by favor, is no
reason why we should not speak of it as belongs $t o$ our high privilege as independent Editors, there-
fore, if Mr Gooey wishes to ond the Lad's Book
in future, he may do so and we shall in future, he may do so, and we shall speak of it as
we please. We can get along without it, but will
talk take it in and notice it out of respect to the publish-
er. Those wishing to obtain the "Book" can find
it at 43 Ann street, as above stated.
 Will find the SCIENTIFIC AMERICAN a journal oxactly suited to their wants. It is issued regularly number contains an Official List of PATENT number contains an
CLAIMS, notices of New Inventions, Chemical and Mechanical ; Reviews, proceedings of Scientific Societies; articles upon Engineering; Mining, Architecture, Internal Improvements, Patents, and Patent Laws; Practical Essays upon all subjects connected with the Arts and Sciences. Each Volume covers 416 pages of clearly printed matter, interspersed with from Four to Six Hundred Engravings, and Specifications of Patents. It is the REPERTORY OF AMERICAN INVENTION, and is widely complimented at home and abroad for the soundness of ter, the publishers have the cratigfection of charac it the first among the many Scientific Journals in it the first
the world.
Postmasters, being authorized agents for the Scientific American, will very generally attend to fo mittances.
MUNN \& CO.,
 128 Fulton atreet, New Yor
INDUCEMENTS FOR CLUBBING. ix montha, at our regular rates, shall be entitled to one copy for the same length of time; or we will
for Six Mon
Ten Copies for Twelve Monthe,
Fifteen Copien for Twelve Montha, Twenty Copies for Twelve Montha, $\$ 8$
15
22
28 Southern and Western Money taken at par for Pull value.
N. B.
paying me public are particularly warned against credited from this office. The only safe way to obtain a paper is to remit to the publishers.

