AN IMPROVED ORE CRUSHER.

A machine designed to operate as a stamp and pulverizing machine, and which may be nicely adjusted to grind the ore to any desired degree of fineness, is shown in perspective and in section in the engraving. th heen patented by Mr. Joseph Brumbaug, machine is a concave bed plate, the cavity carrying the machine is a concave bed plate, the cavity carrying the bed plate being partially covered by projecting plates to
prevent the ground ore slushing up out of the bed. In prevent the ground ore slushing up out of the bed. In
the center of the bed plate is the under die, which is vertically adjusted by placing metallic plates beneath it. The upper die is dovetailed into a stamp block which rises above the bed, and has at each end projecting arms pivoted to the lower ends of cranks on shafts extending across the machine above the ends of the bed plate, the ends of the shafts being journaled in vertically sliding blocks moving in slideways in the frame. The sliding blocks are connected by links with other shafts above, turning in boxes carried on top of the frame, and the latter shafts have upwardly extending, forwardly curved levers, to which are pivoted short levers forming toggle joints. The short levers are pivoted at their lower ends to a sliding plate moving vertically in a slideway of the frame, the plate having a series of holes by which it may be connected at different points to a pivoted lever extending through a toothed rack, and held where placed in the rack by a spring latch. By the adjustment of this lever the upper die carried by the stamp block is held the exact distance desired from the lower die, thus regulating the fineness of the grinding. One of the arms of the stamp block is pivoted to a pitman, by which the stamp is moved back and forth in the central cavity, swinging on the crank shafts, the upper die having a rubbing action as it passes the lower die. An opening. in front of the dies is closed by a portions of the pulp may pass, although with free-millportions of the pulp may pass, although with free-milling ore the greater portion of the metal will remain in
the crusher. On the back of the machine is an inclined the crusher. On the back of the machine is an inclined
spout which delivers at two points in the crusher, thus causing an even distribution of the ore, the upper end of the spout being supported in a hanger to which is secured the feed trough, a shovel operated from a shaft pushing the ore delivered by a hopper through the feed trough into the inclined spout, sufficient water being run through the spout to wash down and flush the ore.

A NEW FEED WATER HEATER AND PURIFIER. In the feed water heater and purifier shown in the illustration the chamber on the left contains the cold water filter, the one on the right the hot water filter. In operation the heater and purifier is placed in the frue between the boilers and chimney, and the feed water fed into and through the cold water filter, then into and through the tubes, where it is brought up to a boiling temperature, or over 212°, by the waste heat from the boilers, when it passes through the hot water purifier, where all the sediment and deposit is removed from the hot water before going into the boiler. The benefit to be derived from this system of feeding is too apparent to. need comment. This im proved heater is manufactured by th Campbell \& Zell Company, Baltimore, Md.

Fast Torpedo Boats.

The torpedo gun vessel Speedy, which is being built for the Royal Navy by Messrs. Thornycroft, of Chiswick, is expected to be one of the fastest vessels of her class in the service. A member of the firm has stated that he anticipates she will attain a speed of between 21 and 22 knots. In connection with this statement and with the contro versy which is now proceeding, the Times gives a list of the fastest torpedo boats and torpedo gun vessels of less than 1000 tons displacement which have hitherto been ordered by, or completed for, the leading naval powers. These are: Great Britain Speedy, $21 \cdot 5$ knots; torpedo boat No. 80 23 knots. France, d'Iberville, $21 \cdot 5$ knots torpedo boats Coureur, Véloce, and Grondeur, 23.5 knots. Germany, division boats Nos. 5 and 6, 22 knots; torpedo boats Nos 65 to 74, 24 knots; Nos. 76 to 80, 25 knots Nos. 75 and 81 to 96,26 knots. Italy, Tripoli, 23 knots; torpede boats of Aquila class. 25 knots. Russia, boats of Adler class, 26.5 knots. Austria, boats of Komet and Trabant classes, $20 \cdot 5$ knots; torpedo boats of Falke class, 22.4 knots. United States, Cushing, 22.5 knots. Argentine Republic, six 130 ft . Yarrow boats, $22 \cdot 5$ knots. Chile, Lynch and Condell, 21 knots; torpedo boats of Glaura class, 22 knots. China, torpedo boat (Schichau), 24 knots. Denmark, two torpedo boats, $22 \cdot 1$ knots. Spain. Destructor, 21 knots; torpedo boats of Rayo class, 24 and 25 knots.

THE OLSEN FEED WATER HEATER AND PURIFIER

A "circular mil" is a phrase widely used in electrical affairs. By a little inquiry among a certain class of most excellent practical men, we can easily find person who do not know exactly what the phrase means. Thi word mil is not found in our school books and has no legal status. By the Constitution of the United States, Congress alone has power to regulate all weights afd neasures. In 1792, Congress enacted that a "mille" should be the thousandth part of a dollar. This wor was only a description of one of the terms of ou money of account. We never coined a "mille" at ou mints. Our forefathers followed the old Latin spelling of the word meaning the one-thousandth part. In nodern times we have changed the spellin to "mill." The newly-coined word used in electrical affairs is spelled mil, and means, say Electrical Progress, the one-thousandth part of an inch. The phrase a "circular mil," as used in giving the sectional area of wires, mean the area of a circle the one-thousandth part of n inch in diameter
Now, let us inquire why we use the area of a aircle in giving the size of a wire rather than the area of a square, as is done in all other mechanical calculations. Why not use a square mil instead of a circular mil ?
As far as minuteness in size is concerned, one would answer just as well as the other. A wire of but one-tenth of an inch in diamete has a sectional area of 10,000 circular mils. A circular mil is only about one-fourth smaller than a square mil. If our wires were square instead of round, electricians would have used the square mil instead of the circular mil. So we may answer that as wires are round, and a we frequently desire to compare their respec tive areas, we can do so most conveniently in circular mils. We can measure their diame ters and compute these diameters in thousandth of an inch. As the areas of all circles vary as the square of their diameters, then by having the dia meters we can, by one simple act of multiplication find the number of circular mils contained in each wire As the electrical capacity of a wire to convey electricity varies as its sectional area, we use this simple method in obtaining the area, which is of great convenience in ordinary electrical calculations.

Dwellers in the Arctic

In 1813 Sir John Ross discovered an isolated race of human beings, numbering about two hundred souls living on the inhospitable shores of North Greenland To this community he gave the romantic name of "Arctic Highlanders"-a name which unfortunately is misleading; for they are a littoral people and cannot misleading; for they are a littoral people and cannot cap, and, moreover, they will not even visit it, for thi inland ice is to them a region of terror, a land wher abide their demons and evil spirits. At the presen day they number, as near as can be estimated, abou the same as when the knowledge of them came to the civilized world; nor have they increased their territory, but live on the narrow strip of mountainous coast, which is lef bare during the summer months by the retreat of the winter snows. They could not be more cut off from other huma beings did they live on some small ocea nic island. Practically, they do live on an island, for they are surrounded by waterby great expanses of solid water; for they never pass the ice barrier of the great Humboldt Glacier, with its sea face of sixty miles; they never ascend to the summe foot of the "ice blink," some two thousand feet above sea level, nor attempt to wande south over the vast ice floes of Melvill Bay, one hundred miles in extent. At 79 north latitude, near the southern edge of the Humboldt Glacier, is a collection of huts known as Etah, their most northern settle ment, while at Cape York, in latitude 75 55^{\prime} N., probably their largest encampment, is their southern limit, and which, as nea as we could determine by the sign lan guage, they call Pitanito. Their country is about 185 miles long and from three to five miles in breadth.-Scribner's Mag. the worms, which, as before, had been exclusively fed with comfrey leaves, yielded normal cocoons. While the heaviest for previous years weighed 1.39 grammes, those of the present year have a weight of 1.83 grammes, and their thread harmonizes completely as to gloss and tenacity with the usual product obtained by means of the use of mulberry leaves. The period of incubation amounted to from 39 to 47 days. These interest ing experiments thus appear to promise very importan results.-The Textile Mercury.,

George the Victorious.

A new Russian ironclad of 10,280 tons has been finished at the Sebastopol ship building yard Her length from stem to stern is 340 ft ; ; breadth of beam, 69 ft ; and depth, 26 ft . The engines are of 16,000 horse power, and the speed of the vessel is from 14 to 17.5 knots. The new vessel, which is named George the Victorious, will be armed with six long range 12 in . guns, mounted en barbette, seven in. guns mounted on the battery deck, eight quick firing guns of the Baranovsky model, six 37 milli meter quick-firing guns for the tops, and seyen tor pedo-propelling tubes.

