The Drying up of the Sea

There is an interesting discussion in progress, in the National Intelligencer, respect ing the progress of the coral formations-re ducing the waters of the sea to solid land W. D. Porter introduced the discussion, and he has been replied to by H. R. Schetterly, our correspondent. Mr. Porter maintains that the ocean has diminished in liquids, by the amount of the solids formed by the zoophites and shell fish, and that the shores and lines of coasts have changed their form in consequence of the subsidence of water caused by this diminution. The zoophites surround the world in a belt, extending 39 degrees from the equa. tor each way. They are constantly forming solids from the liquid ocean. They have al ready formed sixteen millions of square miles And liquids when reduced to solids, generally occupy less space. Mr. Porter says :-
Where rolled many millions of waves, now stand many millions of miles of firm rocks, their basesfast to old ocean's sand, their tops peering above old ocean's blue waves.

Mr. Schetterly in reply maintains, that though there is a subsidence of waters, it must be from other causes-the actual quantity of water on the globe has not diminished. He thinks a diminution of the sea, would diminish the amount raised by evaporation, and falling in rain, and would be destructive to vegetable life. This sort of reasoning is not satisfactory against a matter of fact. Should great changes take place on the face of the world, Providence has resources to make one thing balance another. And agencies of which we now have no idea, might come in to do the work of sprinkling the earth, after the sub-marine land-makers had exhausted a considerable portion of the sea. It is evident that the world is yet to subsist a population vastly greater, than it now does; and that God is making room for them. And we read that in thenew earth which is to exist after the dissolution and re-construction of this"There was no more sea."
And there may, for ought we know, be a gradual diminution of the sea, to make way for the vast population which is to fill the world in the inillennial state. At least we need not shrink from allowing the actual progress of things towards such a result, to have its weight on our minds, for fear that God cannot spare the wasted waters, or cannot preserve the life and health of the world with out them. The earth before the flood appears to have been watered in a different way from what it now is. And it very much limits the resources of Him who made the world, and who set to work the zoophites making its so. lid land more ample, to assume that he has no other means of watering the solid earth than to devoting to it so large a proportion of the earth's surface, as is now covered by the sea.-[Puritan Recorder.
[We understand by our worthy cotemporary, that it believes in Mr. Porter's theory and draws from the Bible an argument for the necessity, or rather probability of its correctness, against Mr. Schetterly, that although the wa ters of the sea and evaporotion were diminished, Providence has other resources to make one thing balance another. It throws out the hint that the increase of the earth may be for the vast population of the milleneum, but surely Providence which can make a new way of supplying the earth with moisture, could also find a way to sustain the vast population of the earth with the present ex tent of dry land. The earth was watered be fore the flood just as it now is, by evaporation and condensation. Before man was cre ated, it is said there was no rain but mist, and from this we would infer against Biblical critics that after man was placed in the Garden before the flood, there came rain, 一" showers that ushered in the spring and cheered the thirsty ground." The Books of Moses are profound philosorhical works, not false philosophy, and in no casedo we find them contra. Ψ dicting sound science. The hypotheses dicting sound science. The hypotheses

Rg
slender data. The seas have no less waters to-day than they had four thousand year ago; they are a constant quantity. It is foundationsbu t if the dry land has made en croachments on the sea in some places, the sea has made encroachments on the dry land in thers. Where the cities of the Plain stood, there is now the deep Dead Sea; the wave oll over the walls of ancient Tyre. Where Port Royal stood, the shark sports, and where the quay of Lisbon once lifted up its solid walls, alas they now are fifty fathoms deep below. The sea has been making, year after year, great encroachments on the coast of Norfolk, in England, and where once the large and fineisland of Norland stood in th German Ocean, there are only three small islets. In one tempestuous night, the sea buried the most of it beneath its waves.
We could cite various other instances of the ea's incroachment : England was once united to France, and so was Scotland to Irelandthe evidences of this appear to be beyond ca vil. There is one expression in the extract quoted which we cannot pass over, "liquids when reduced to solids generally occupy less space." This is not the case with water, and zophites cannot raise a foot of coraline rock ithout tuking the material from the sea to build it. They do not make their formations out of nothing, therefore the waters of the sea cannot be growing less, unless the coral have discovered a way to change the very na ture of the water itself, convert it from water into their lime formations-a thing imposes ble. The coral formationa increase very slow1y. In some of the gaps in the Australian reefs scarcely a perceptible difference has been discovered in their elevation, for fifty years. If there are elevations taking place in one part of the earth, science teaches us that there must be depressions in some other. By the common laws of the Universe, no portions of any kind of matter are growing less-such as the drying up of the sea-by any organic or norganic action. The sea will never dry up until "the elements shall melt with fervent heat," and when there shall be no more sea,
there will not be the same kind of inhabitants on the earth, for our bodies are composed of about 81 parts of water.

Hydraulics.

[Continued from page 360 .]
Me.astring the Power of Wierls. The force applied to propel a wheel is as the quantity of water and the perpendicular height of the fall. Although this force is easily cal culated by multiplying the velocity into the weight, yet this will not give the power of a water wheel, for of two wheels driven by the ame quantity of water and the same fall, on may perform 20 per cent. more labor. This is owing to the superior construction of th one over the other. The way to test the labor ing force of wheels is by a dynometer such a M. Morin's Friction Brake, two kinds of which are here presented.

Fig. 61.

A is a sheave pulley on the wheel shaft B is a lever secured to it by straps, C D, all tightened by screws. The brake is fastened to some permanent part of the frame or building at D. The weight of the lever and scale must be known. The weights are put into the scales so as to pull it down and
slacken the fastening at D, and the wheel is slacken the fastening at D, and the wheel is
set in motion so as to balance its effective power by the weights, at the end of the lever If the pulley is 3 feet in diameter and the le ver 5 feet long from A to the point B, and if the weight of the lever is 30 lbs . and 75 lbs , on the scale and the wheel making 50 revolutions per minute, the power is $50 \times(75+25) \times$ $5 \times 3 \times 3.1415 \div 33,000$. In 1836 a work was published in Paris denominated Experiences sur les Rous Hydrauliques a aubes planes et
les Rous Hydrauliques a augets, and. from
this work our readers will get the equations
relating to the force and measure of power. We refer to such works because works on hy dronamics are very voluminous.

Fig. 62.

Fig. 62 is another modification of a friction rake. A is a sheave pulley fastened to the wheel shaft by tightening screws and correctyst to run concentrically. A metal strap is atted round the pulley passing through the lever, B. These screws can tighten the strap as may be desired; C is a metal box (some have used wood) acting opposite to the strap On the end of the lever is a balance spring irmly secured to some fixed object like th ever, the preceding figure. This brake can e applied to either horizontal or vertica hafts. In the Franklin Journal of 1842 some very interesting information will be obtained rom the experiments of Elwood Morris, on esting the power of water wheels.
We shall publish the mode of estimating the power applied to various wheels, nex veek, after which we will conclude those se ies of articles, by one or two papers on th philosophy of the Re-action Water Wheel, hat impela it.

Extraordinary Pertrification and other Curlosities.
The steamer St. Ange, Captain Labarge ays the St. Louis Intelligencer, arrived here esterday from the Yellow Stone, after a voy ge of fifty-two days. Capt. L. informs us hat forten years past he has in every sucessive annual trip observed a remarkable ooking solitary cedar tree standing upon a leak and elevated point, about fifty miles elow the mouth of the Yellow Stone. While coming down, this last trip, he saw that his old acquaintance had fallen to the earth. Curiosity led him to the spot, which was bout half a mile from the river, and perhap 700 feet above its level, when he found, to his surprise, that the tree was in the most perfect state of petrification. Judging from the short ness of the interval since he had seen it tanding, it must have been in that condition while standing erect as it had grown. The runk was about thirty-six inches in diamete A fragment of it is now lying upon our table, nd is decidedly the most perfect specimen of gneous petrification we have ever seen.
Dr. Evens, U. S. Geologist, who came a passenger on the St. Ange, found near the the same spot, the shoulder-blade of a mastodon, measuring nearly 3f feet across-also ome enormous foot bones of the same animal Fossil shells, the head of a snake, and othe curiosities, were found by Dr. E. in the same ocality.
Among the notabilities of the trip was the catching of a beautiful specimen of the Linnet -a bird very rarely seen-by some of the oat hands. Its plumage is beautiful Mre Berthold, who also came on the bo
Mr. Berthold, who also came on the boat
rought with him the stuffed skin of one o the mammoth mountain sheep of the Yellow Stone region. It stands about as large as an ordinary milch cow, and is indeed a remarkabe curiosity.
Captain Labarge brought down some beautiful specimens of the rocks found on Cannon Ball river, whose name is derived from them. They are perfectly spherical, and, without a very close inspection, would pass for real cannon balls anywhere. They are of sizes ranging from that of a common toy marble to the bulk of a hulf-bushel measure. They are seen in measureless abundance, projecting from the face of the steep banks between which the river runs.

They cultivate the blackberry, in the neigh borhood of Boston. An old pasture is broken up, the sprouts are planted in rows in October
like raspberries. The Agriculturist says tha the fruit thus produced is of a size and flavor which surprises those who are only acquainted with the wild blackberry. Our readers may not all be aware that the American spe cies has a more agreeable flavor than the Euroean. There are also different varieties of the American fruit even in its wild state, from which a selection might be made.
A self-sealing envelope for the ballot-box has been invented at Boston. The Secretary of the Commonwealth of Massachusetts con tracted for the immediate manufacture of $1,200,000$ self-sealing envelopes, at a cost to the State of $\$ 18,000$. These envelopes are to be used by the voters of Massachusetts, in arrying into effect the Secret Ballot Law, passed by the last Legislature.

LITERARY NOTICES.

ajdeess on Cherch Music, by L.owell Mason. -
 his address more han ordinary interest, not becsuse
he has been a teacher, but such a teacher. On tendering his resignation as cunductor of musio in the
Central Church, Boston, he was presented with an Central Church, Boston, he was presented with an
eleagant and coosly silver vaee, bv te past and pre-
sent members of hischnirs. On that ockasion he de. cent members of his chnirs. On that oclasion he de-
ivered the Adress, which is now publisiled by MRon \& Law, of this city, and it contains many most inter esting statemen
in our Church Musio.
Tue Scalpel-A journal of Health, adapted to po-
pular asd prolessional reading, etc. : edited by Edpular ard provessional reading, etc. : edited by Ed-
ward H. Dixon, .1. D., New York. This abo quar-
 oiementary substances of our body, ente., are, very
abie and ingtroctve. This number is embelished
vith a likeuers of Dr with a likeuess of Dr. Carnuchan of superior artistio
oxcellence. The Editor's "Soda Water עepartment" Balleays. peculiarly well seasoncd, and possesses
some of the finest scin illations ol sarcasm 1 be ome of the finest scintillations ont sarcasm to be met
with. Everybudy should read "The Scalpel." \$1 With. Everybudy should read
per annum ; 25 conts per number.
Iconoaraphic EvcyclopediA.- Part 22of this use-
ful and beantifal work io now isoued and ready fur sale by its enterprising pablisher, Mr. Rudolpady Garigue, No. 2 Barclay street, this city: it contains 20 distinct figures and groups of Egyptuas, Greaian,
and
and
Roman zatatuary nd Roman statuary. Thes letter press pages com-
ise pages 425 to 500 , and treat of Mamualia. prise pages 425 to su0, and treat of Mammalia. In
hree monthe more this splendid work will be comploted.
Dictionary of Mechanics and Engine Work.Co., conthaina a articles on whe the Tranait Instrument urbine, Turn tables, Trising iron, Warming and
 ine in its improved form, is exclusively of american origin, and not a word is said about thif, the in
lormation alout the turbine, however, is valuable.

INVENTORS MANUFACTURERS. The Best Mechanical Paper SIXTH VOLUME OF THE SCIENTIFIC AMERICAN. The Publishora of the SCIENTIFIC AMERICAN
give
 BNTIEIC AMERICAN hhe country to require a detailed account of the va.
iouas subjects discussed through it
It enje It enjogets a more exitensive and ith infuentia)

TrRMs-\$2 a-year; $\$ 1$ for six months.

Publishers of the Soientific American,
128 Fulton street, No York.
INDUCEMENTS FOR CLUBBINA.

 Southern an
subseriptions.
\qquad
:

