THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL AND OTHER IMPROVEMENTS.

VOLUME 6.]

NEW-YORK, JULY 5, 1851.
[NUMBER 42.

Scientific American, Circulation 16,000 published werkly At 128 Fulton, atreet, N. Y., (Sun Building,) and BY MUNN \& COMPANY, T. The Prinoipal Offoe being at Now York. A. T. Hotchk iss, Boston.
Dexter \& Bro. New York City. Dexter \& Bro. New York
Weld \& Co., Ne Orleang.
Now
Stokes \& Bro., PWiladel hhia.
R. E. Edwards \& Co, Cinain
Jno. Thomson,
Edwards \& Ringgold, Lnuisville, Ky.
Conke \& LeCount, San Franoisco, Cal.
Conke \& LeCount, San Pranoisco, Cal.
Courtenay \& Wienges, Charleston, S. C.
John Carruthers, savannah. Ga.
Bariow Payne d Iarken, London.
Barlow, Payne \& l'arken, Lon
M1. M. Gardissal \& Co. Paris.
Responsible Agents may also be found in all the
principal vities and towns in the United States principal oities and towns in the Unted States. TERMS--- $\$ 2$ a-year-- $\$ 1$ in advance and the
remainder in 6 months.

IRnil-IThnutymus.

New York and New Haven Railroad. We endorse the following commendation of this road from the Daily Sun of the 27th ult. We have travelled not a little over the different roads of the country, and we have never found one better managed in every reapect than this. The arrangements are a near perfection as we can expect at present. "Frobably no road in this country has ever advanced in public favor so quiclsly, or made money so rapidly since its completion as this road. Its arrangement has been such, as in all respects, to please the travelling community, and it must be a matter of congratula tion to the stockholders, that they have such a man at the head, as Robert Schuyler, Esq. who, as a man of judgement and practical ex perience as a railroad man, is second to none in our community. The conductors are in all respects gentlemen, as all who have had the pleasure of travelling with Messrs. Comstock, Quintard, Dennis, or Oakley can testify, and we believe all the appointments on the road are unexceptionable. The laying of a double track is progressing rapidly, and will probably be completed in the course of the year. Oyster shells are being put upon the road, to pre vent the rising of the dust, so annoying to passengers, and in a short time the condition of the track, and the comfort of riding, will be superior to any other road.'

Cattle Freight on Railroad.
Railroads are not only a great benefit to dis. tant farmers, but to the people of our cities. No man can estimate the benefits conferred upon mankind by railroads. Cattle are now transported from the Kentucky to this city in half the number of days that it once took weeks to travel. There is no loss of beef by travel, and there is a general saving in the price of each animal of about $\$ 20$. Is not this a great benefit simply considered in itself? The animals which used to come to this city a fter a journey of 500 and 600 miles, looked like seare-crows in comparison with those which now arrive by railroad, after a journey of three times that distance. The citizens have now better beef for less money, and th farmers better prices and less expenditure.

Black Rock Suspension Bridge.
A bill is now before the Legislature autho rizing the building of a suspension bridge, ove the Niagara River, at Black Rock. It is the intention to build the bridge from nine-five to one hundred feet above the water, so thatthere is no possibility of its interfering with the navigation of the river.

It is now about the season when the Sea Serpent should make his appearance. Some news about his imperial majesty may be ex pected daily.

DODGE'S NEW PRINTING PRESS.

The accompanying engravings represent a tens, and the cranks on one set are so arran new printing press, invented by Mr. Thomas ged upon them in relation to those upon the H. Dodge, of Nashau, N. H., who has applied other set acting with them, that each platten or a patent.
Figure 1 is a side elevation of a press suitahle for job wort, in which one side of the paper is printed; part of the framing is broken way to show the inking apparatus. Fig. 2 is a longitudinl section of the same, taken near its centre. Fig. 3 is a detached view of the inking apparatus. The same letters refer o like parts.
The plattens and type beds are hung on cranks placed on parallel shafts and so arranged that the plattens and type beds are lways parallel or nearly parallel to each ther during the revolution of the shafts, Those shafts which carry the type beds revolve contrary to those which carry the platmoves in the same direction longitudinally a the type bed corresponding with it-both oward and from one another. They aro brought ogether sufficiently close to make the impression (print). The sheet to be printed is in a roll or web, fed in continually at the speed required, and when an impression is made the sheet is cut off. The type is inked by a roller, the motion of which is controlled by the motion of the platten. A B is the framing ; C C,' and D D,' are short shafts hung in bearingsin the standards of the frame, each formed of two parts, one on each side of th frame, in line, so that both have the same ax is; C and D are equi-distant, so are C^{\prime} and D^{\prime}; the two first are on the same horizontal

EELT 2

plane, so are the two last. Upen each part time; and when one pair areturned upwards of the said shaft, inside of the bearings, there is a crank, E. All the cranks are of equal length; those with the same axis are placed opposite, to form part of the crank. The cranks on C and C^{\prime} are placed in corresponding positions, and the platten bed is hung upon them. The platten is hung upon the cranks, D^{\prime}. The shafts C and D are geared together by the cog-wheels, F F, and C' and D^{\prime} are geared together by a similar pair of cog-wheels. C and C' rotate in opposite directions to D and D^{\prime}. The wheels are geared so that the cranks on D and D^{\prime}, and C and C^{\prime}, alway
in a vertical position, the other pair are turned downwards, and vice versa. G is the type bed hung on the cranks on the shafte, $\mathrm{C}^{\prime} \mathrm{C}^{\prime}$, and kept in a horizontal position during their evolution. H is the form of type placed in the bed in the usual way; I is the platten hung upon the cranks on the shafts D^{\prime}, and always remaining in a horizontal position; J is a stationary stud or gudgeon, secured on the ide of the framing; K is a driving pulley running loosely upon it. L is a cog wheel secured to the driving pulley and gearing into wheels, F F, on shafta, D D^{\prime}, driving hoth in
red to one side of the type bed, they support certain parts of the inking apparatus; N is the distributing roller hung in the lower parta of $M M$; the upper part of its periphery stands nearly level with the top of the "form." The side of the type bed is receseed, as in figure 3, to let the top part of the roller come close to the bed; n is a amall grooved pulley on the axis of the roller. 0 is a amall bar of ateel or other flexible material attached of the platten and hanging down from it ; a cord is attached to it near its upper and lower ends, enclosing the pulley, n, and by the upward and downward motion of the platten and type bed, a reciprocating rotary motion is communicated by it to the distributing roller; P is a small barrel cylinder hung in the upper part of the standards, M, carrying a radial arm, Q, at the end of which is hung a lever, R, having a long and a short arm; the long arm carries a bar, in which the inking roller, S, is hung; the short arm is connected by a spiral spring, r, to a amall bar, s, placed across the standards; this spring has a tendency to push down the inking roller. A tangential bar, p, is secured to the barrel, P, and is struck by every upward

motion of the platten, throwing it upwards and giving the barrel part of a revolution, by which the arm, Q, is thrown towards the press, and the inking roller, which rests upon the distributing one when not in use一is moved across the type, the spring, r, keeping it down upon the type; \boldsymbol{p} is an upright type bar, secured to the type bed on the opposite side, and to it is appended a apring, t, attached to the cord, u, which passes over and is secured to the barrel, P. This spring pulis on the cord turning the barrel, when the bar, p, is not acted upon sufficiently to throw back the inking roller to the distributing roller beyond which it is prevented from moving by its frame coming in contact with the standards, M M. $U U^{\prime}$ are cylinders hung in bearings in standards at each end of the frame. U carries a pulley, on its shaft which is fitted to it so as to turn freely, driving the cylinder by the stud, a, on its face, which comes in contact with a pin inserted transversely in the shaft. The pulley receives motion by the band, c, from pulley d (figure 1) on shaft C^{\prime}; U is driven by a band, e, running from V. Tapes run over these cylinders for the purpose of carrying the paper to feed to the press. The mode of carrying the paper formano part of the inven. tion, we therefore do not describe it, excepting to say that the paper will be carried parallel with the face of the type bed and platten and about midway between their centres of motion. W (fig. 2) is the spring presser, which consists of a stud fitting in a socket secured on one side of the type bed; the lower part of this stud is made smaller than the upper part to form a shoulder; under this
shoulder，encircllng the stud，a spiral spring，
s ，is placed in the socket，which forces in the stud，but，at the same time，allows it to yield to pressure，causing it to stand ap above the face of the type bed at a point exactly under the upper part of the band，e．Every time the type bed and platten approach one anoth． er，the presser comes in contact with the band and presses it up against the under side of the platten or a plato secured to it，and thus holds the band so that it and the sheet must move at the same speed as the type bed and platten．If the speed of the cylinder， $\mathrm{U}, \mathrm{U}^{\prime}$ ， which is adjusted as nearly as possible to the speed of the type bed and platten，should be too slow，the manner in which the pulley，V ， acts on U ，admits of its being moved faster，but if it should go too fast，the speed of the lar－ rel and of the cylinder， O^{\prime} ，will be temporari－ ly retarded．
Opiration．－Rotary motion in given to the driving pulley，and the cog－wheel，L ，in the direction of the arrow（figure 2）；this cog wheel gives motion to the wheels，F F，which， with their shafts，and the cranks upon them， revolve in the directions pointed out by the ar－ rows shown near their peripheries．This gives motion to the type bed and platten．These， by the positions in which the cranks are ar－ ranged，always move in the same direction longitudinally or horizontally．The type bed and platten are at a distance apart，but they meet during the revolution of the crauks so as to make the impression on the paper．Just before the platten reaches its highest position， rel，P ，pushing it upwards and moving it to the position shown in gigure 3 ，where the ink－ ing roller is supposed to have moved forward across the form，and the platten is about to descend and release the bar，p ，and leave the bariel， P ，free to be acted upon by the spring， t ，and cord，u ，which throws back the inking roller to the distributing roller．This motion takes place previous to every meeting of the type bed and platten，and gives the proper quantity of ink to the type．If the speed of the cylinders， $\mathrm{U}^{\prime} \mathrm{U}^{\prime}$ ，be properly regulated，the paper must travel at the proper speed，but in case the driving band should slip，it is neces－ sary to insureits motion by the spring presser W．The paperis cut off into proper sheets after it is printed，by a cutting apparatus at the ond of the press；such a contrivance isnot new in printing presses．
In connection with printing one side of the paper，a duplicate arrangement of the same machinery can be made to print both sides at one continuous operation．The great object of this press is the arrangement of machinery for rapid motion，yet to make the impression on a plane surface，to produce the best impres． sion－a combination of the rotary and recip－ rocating printing press，Mr．Dodge has inge－ niously accomplished his object．
［Speoial Correspondence of the Soientific Amerioan． London，June 12th 1851. Next to the Great Exhibition building it self，the greatest novelty in London，is Mr ． Wyld＇s great model globe．The English ap－ pear to indulge in gigantic projects．This globe has a surface of more than 11,000 square feet，and is a great novelty in geographical acience．
The diversities of the earth＇s surface are modelled with minute accuracy，the scale being one inch to a mile vertically，and one inch to ten miles horizontally，the diameter being 60 feet．The spectator is supposed to be in the interior of the earth，and to look up to its concave surface．The different countries are tinted，so as to represent the truth of na－ ture as nearly as possible，and no writing or inscription of any kind disfigures the general appearance of the gigartio model．The visi－ tor enters the model through the South Pacific Ocean，and the southern extremity of Africa is the first land of which he gets a view．Four galleries，one above the other，enable the visi－ tor to examine closely every portion of the model．It is intended to supply the visitors with a kind of index to the model，by arrang－ ing the inder maps in the different galleries． At present，the shape and relation of the diffe－ rent parth of the model alone explain the iden．
minutely accurate，however，is the delineation that the visitor，moderately educated in geo－ graphical science，can seo
＂Thich he is in search．
＂That nothing may tend to divert the at tention from the natural appearances which the earth＇s surface presents，there is no writ ing upon the model．The sea is colored blue， and the land of as natural a tint as possible． The great model teaches what no man can teach－the earth＇sform as a whole，its genera aspect，the relative quantities and position of its several parts，the bearings of its hills， the flow of its great waters，and the seats o
its rich dales and its barren wastes
The top of the globe is made the north pole， and the bottom the south pole，without a egard tion of the ecliptic．＇

Mr．Wyld＇s work is something more than s mere exhibition for amusement．It is proba bly the most uséful of all the metropolitan ex－ hibitions．The mere mechanical skill which could build out of thousands of plaster blocks a complete and accurate model of the earth＇s surface，is no ordinary triumph．
There is one American now in London who is astonishing the natives，this is Mr．Hobbs， the great Lock Man，of New York，who is an exhibitor here，all the great locks－the sup－ posed unpickable ones－yield to his Yankee genius，like the door of the robbers＇cave to Al Babi＇s＇sopen sesame．＂His magic word is a crooked Yankee nail，which he carries in his vest pocket，and with it＂he picked the here－ tofore supposed unpickable Chubb lock，which laughed at all the English locksmiths and rogues．It is the reliance of bankers，and se－ cures the archives of the government．He opened the cheat in jastifteen minutes，and he proposes to try his hand at several other locks，to the successful opening of which large rewards are offered by the inventors．
One small but good invention is exhibited in the American Department．It is a model key with a revolving end．The object of the invention is to give to housekeepers all the safety against lock－picking which they can derive from having the key inserted in the hole，and there left to prevent the insertion of any burglar＇s implement，of which it is well known there are 2 great variety adapted to the different descriptions of locks．The only effect which the burglar can produce on it is to turn round the revolving end．
It is a New York invention，and was paten tented，I have been informed a short time ago．
One of the most singular inventions exhibi－ ted is the model of a man by Count Danin． It represents the figure of a man five feet high， in the proportion of the Apollo，and from that size the figure can be increased in all its com－ partments to six feet eight inches．It is in－ tended to facilitate the clothing of an army； and it is yo ingenious that the Emperor par－ duncd and recalled Count Danin，who is a Pole，on seeing this result of many years＇ labor．The number of pieces composing the model is 700 ．
Among the gems of sculpture is the＇Veiled Vesta．＇It represents a young and exquisitely formed girl，kneeling and offering her oblation of the sacred fire．Her face is veiled，but every feature is as distinctly visible as it were through the folds which cover her face．

Excrlsior．

Curious Discovery in Bulgaria．

A very curious discovery has just been made in the province of Bulgaria，in Turkey． Some Greek workmen，in digging near the vil－ lage of Rahmanileah and the town of Hadzah， found a large table of grey colored marble； they removed it，and found one beneath exact－ ly similar；having removed that also，they saw a great number of objects shining like gold and sliver．They hastened to the cap－ tain of the district，and that functionary，as． sisted by two ecclesiastics，proceeded to make an examination．They found a skeleton of large stature，with a copper helmet on his head，surrounded by a thin crown of gold； the hands and arms up to the elbows were
the right hand was a copper chain，with an incense－bor of the same metal，covered with verdigris，on the third finger of the left hand was a gold ring，with the figures in Roman characters，966．By the side of the skeleton were three cups in silver，very brilliant，and 26 cups in iron，very rusty but bearing trace of having been gilded；there were also an im mense number of nails，and about 500 arrows， of which the wood was rotten and the points rusty．The skeleton and the different articles were carefully packed up，and sent to Adria nople for examination．

Passages of the Atlantic Mail Steamship

 from Liverpool to New York，from April 3，to June 1， 1851.Africa，（B），arrived Thursday，10th April at 7 A．M．Left Liverpool 29th March at M Passage， 11 days 19 hours．
Pacific（A），arrived Saturday，April 19，a $10 \downarrow$ A．M．Left Liverpool on the 9th，at $2 P$ M．Passage 9 days 21ł hours．
Asia（B），arrived on Wednesday，A pril 23 ， at $10 \frac{1}{s}$ A．M．Left Liverpool on the 12th at 5ł P．M．Passage， 10 days 17 hours．
Europa（B．），arrived on Thursday，7th May at 7 A．M．Left Liverpool 26th April at M Passage 11 days 17 hours．

Arctic（A．），arrived Sunday，11th May，a 7\＆A．M．Left Liverpool May 3rd，at $10 \downarrow$ A． M．Passage， 10 days 19 hours．
Africa（B．），arrived Wednesday at 9 A．M． 23rd May．Left Liverpool Saturday，May 12， at 3 P．M．Passage， 10 days 17 hours．
Baltic，（A．），arrived May 25，at 7 P．M Left Liverpool on the 14th，at M．Passage 10 days 7 hours．
Asia（B．），arrived on Wednesday，June 4， at 8 A．M．Left Liverpool May 24，at 3 \downarrow P． M．Passage 10 days $16 \frac{1}{2}$ hours．
Pacific（A．），arrived Saturday，June 7，a M．Left Liverpool Wednesday，28th May，a 10 A．M．Passage 10 days 2 hours．
Niagara（B．），arrived on Friday，May 20 t $7 \frac{1}{2}$ A．M．Left Liverpool on Saturday，the th，at 1 P．M．Passage 12 daya 16 d hours． Arctic（A．），arrived on Sunday，June 22，at P．M．Lef t Liverpool on Wednesday，the 11th，at 9 A．M．Passage 11 days 4 hours．

Extraordinary Eifects of Lightning．
A late French newspaper relates a marvel ous incident，which is said have occurred du－ ring a thunder－storm in the interior depart ment of France．A bsin，in which were two goats，was struck by the lightning，but not burnt．After the shower，a woman who had been accustomed to feed the goats，went to the barn，and perceiving that the animals were entirely motionless，approached and
touched them，when to her great astunish－ ment and alarm they fell and crumbled to pieces，exhibiting nothing but a mass of cin－ ders．

The Sea Diminishing．

Lieut．Wm．D．Porter，of the navy，has an interesting communication in the Intelligen－ cer，in which he undertakes to show that all the phenomena of change in the ocean line of seacoast，and appearance of rocks above the water，which have been observed and com－
mented on from time to time，are caused by a constant diminution of the waters of the ocean；and that a process is at all times go－ ing on by which the suostances，held in so－ lution in the ocean waters are converted into solids．－［Ex．
［This will not account for the disappear ance of solids－the usurpation by the sea o what was once dry land，as on the coast of England．

A discovery has just been made at Hermi－ ones，in the Peloponnesus，of a certain spring of water which，when mired with oil，becomes at once a kind of soap．A sample has been submitted to chemical analysis．－［Exchange． ［There are plenty of such springs in the Rocky Mountains．The waters are alkaline． An alkali and oil form soap．

A system of banking is discovered to have prevailed in Babylon at least seven or eight hundred years before the Christain era．－［Ex． change．
How

Deep Sea Soundings．
An act of Congress authorizes the vessels of the navy to co－perate with the sciontific Lieutenant Maury，in procuring materials for his investigations into the phenomena of the ＂Great Deep．＂An order of the Chief of the Bureau of Ordinance requires the command－ ers of our public cruisers to get a deep sea sounding whenever it is calm．Heretofore this had been a difficult object．The difficulty was in getting a line long enough，and in knowing when the plummet had reached the bottom．
Recourse had been had by other navies to wire of great length and tenuity，and the great－ est depth ever known to have been reached before the subject was taken up here，was the sounding，by an officer of the English navy， in 4,000 fathoms，which was by no means sa tisfactory．Lieut．Walsh，in the United States schooner Taney，has reported a sounding with－ out bottom，more than a mile deeper than this．

Instead of costly implements used for sound－ ing the depths of the ocean，our vessels are simply supplied with twine，to which they attach a weight，and when the weight ceases to sink they know it is on the bottom；and thus the depths of the ocean，in the deep－ est parts，may，without trouble or inconveni－ ence，be ascertained in every calm of a few minutes＇continuance．
With this simple contrivance the＂Alba ny，＂Captain Platt，has run a line of deep sea soundings across the Gulf of Mexico，from Tampico to the Straits of Florida．
The basin which holds the waters of this Gulf has thus been ascertained to be about a mile deep，and the Gulf stream in the Florida Pass about 3，000 feet deep．
Capt．Barron of the＂John Adams＂has been sounding the Atlantic Basin，between the Capes of Virginia and the Island of Made． ria，belonging to Portugal．He got bottom with a line of 5,500 fathoma，the deepest，and 1,040 fathoms the shallowest．
Men of science will recognise in these resulta some of the most interesting and valuable physical discoveries of the day．They reflect the highest credit upon our navy and those who planned and set on foot these simple and beautiful arrangements，which have cleared away the difficulties with which all have fuad themselves beset who heretofore have under－ taken to fathom the sea at great depths．
We hope these facts will strike the gilt gin－ serbread off the learned pundits in this city，who two years ago held a controversy with us，and took the position that a weight could not sink below a certain depth in the ocean－that there was a place where the waters were denser than metal，and that stones and dead men＇s bones rested in that stratabetween the bottom and surface，like the fabled coffin of Mahomet in another element．

Purifying Water．
Mr．Editor－I have many times seen in papers，and I think in the Scientific American， that a spoonful of powdered alum stirred in a barrel of water，will cleanse it；I have tried the experiment many times，and always find that soft water is made hard，and hard water， （limestone water，as all waters are in western Vermont，）is but little more soft．Will some of your large number of intelligent correspon－ dents tell us how to make water clean as well as clear？The experiment succeeds admira－ bly in rendering water transparent，and pro－ duces a large precipitate of solid substances， but yet leaves in solution something which makes the water unfit for use．H．A．S．
Middlebury，Vt．，June 20， 1851.
［The alum can have no effect in rendering lime water soft，for it produces the effect spo－ sen of，it being a peculiar salt，partaking of acidulous astringent qualities．Oxalic acid is the best substance for presipitating lime in water，but we deprecate its employment for that purpose．For domestic use，the only safe mode of purifying water is by filtration．
The thermometer has been ranging above 90° for some days past．The price of tallow as a consequence has advanced．
The gold discoveries in Maine have torned out to be mere shams．

