constructed, arranged, and operated in any convenient way or manner for prodacing results eimilar to the above, by means subs
tially the same as those above described.
The head of the pump may be made con cave on the inner side, or of an obtuse angle shape, or in two segments or semicircles-the upper segment being stationary and bolted to the cylinder and the lower segment hinged by its atraight side to the straight side of the up per segment to answer as a valve for prevent ing clogging from an accumulation of sparks in the pump, the end of the eduction tube bolted to the outaide of the head of the pump being made sufficiently large to embrace and cover thesaid lower segment of the head which is to serve the double purpose of a head and valve-which arrangement would require the eduction tube to be bolted to the circular flange of the pump instead of the head of the pump, as described.
The parallel guides, $\mathrm{P}^{\prime} \mathrm{P}^{\prime \prime}$, are sustained in their required position by the plate, $b$, fixed to the end of the cylinder, and the plate, $z$, secured to the frame of the engine by the brace or arm, $a$. On firing up the engine, the valve, G, must be turned to a vertical position by moving the rod, $R$, to which it is attached; the furnace and engine being in full operation, and it being required to prevent the sparks escaping from the smoke-stack, the ongineer

must move the rod, R , iongitudinally, which will turn the valve, $G$, to a horizontal position -the aperture in the came surrounded by the additional pipe, $S^{\prime}$, allowing it to drop over the upper end of the exhaust or escape steampipe, $\mathrm{F}^{\prime}$, thus shutting off the communication between the smoke-box and the smoke-stack, E ; the cocks, T T, are then partially opened, which allow a portion of the waste ateam to enter the smoke-box in quantity sufficieat to extinguish the sparks, and regulated by aaid cocks, the main body of the waste atoam being Fig. 4.

allowed to escape in the usual manner through the chimney or stack, it being unnecessary to allow all the waste steam to enter the smokebox and pumps, as it would create an andue pressure on the several parte.
The following are the claims of this patent, and, with the full evidence of what they are, we would state that Mr. Wade is prepared to sell rights, and any communication addressed to him will be promptly attended to :-
"I claim pumping the sparks from the smoke-bor of a locomotive engine, when the sparks are extinguished, or partly so, by the introduction of a portion of the escape steam through the cocke, T T, substentially in the manner and for the reasons stated. I also claim the arrangement of the valve, $G$, in the smoke atack, $E$, as constructed, with the short pipe, $S^{\prime}$, in combination with the anitod atoam pipes, $F$, for proventing the escape of the amake and sparks during the oparation of the pums, and, at the same time allowing the waste stoem to escape through the emoke pipe, E. 78
world. The socialists are as quiet as mice, and never did barmony reign so aupremely ge neral as it has during the wholecourse of the Exhibition from its projection until the pre sent time. We cannot but admire the variou instances of liberality and kindness on the part of many distinguished gentlemen, all of which have been called forth by this monster, as some of the press sneeringly and satirically styled it. As an instance, we see it stated that Lord Leigh has invited all of his nume rous tenants to visit the Palace at his expense and W. Brown, Esq., Member of Parliamen from South Lancashire, and head of the wellknown firm of Brown, Shipley \& Co , has givon $\mathfrak{E} 20$ to each of his forty or fifty clerks to enablethem to visit, without trenching on their ordinary finances, the Exhibition during the season. Again, the Admiralty have grant ed their dock-yard workmen, for the same purpose, leave of absence for two deys,e and we learn they also have agreed to pay a certain portion of the expenses of the artificers who have availed themselves of the permission. A general leave to the army has also taken plac to all regiments at home, from the 1 st of Jun to the 30th : one field officer, half the cap tains, and half the subalterns tu be allowed the indulgence each fortnight in the month We suppose, also the numerous Charity Schools will come in for a general holiday, and if w mistake not, ere this, the Royal Commissione has entertained the idea.
We believe. with the single exception of the Russian Department, the Exhibition may now be deemed complete. From some state mente we have seen, the Ruesian collection will be one of the most wonderful and attrective in the Exhibition. The jewelry arrived is valued at $\$ 200,000$, and it is said will quite eclipse the brilliant display sent by the Queen of Spain. Among other matters is a pair of folding-doors, valued at $\$ 40,000$, of most va luable malachite, from Siberia, belonging to the Prince Demidof: There are also chimneypieces, arm.chairs, and cabinet furniture of the same precious stones. There is an enormous candelabrum, in ormula in dead steel, upwards of 14 feet in heighth, and one in sil ver, representing a group of armed lnights dismounting under a fir tree: the workman ship is exquisite, and it weighs upwards of 2 cwt. of silver.
The American Department is called "The Prane," and each country appears to receive some characteristic appellation by which it is known. The American visitora are requested to register their names in a book provided for the purpose, and on a hasty examination we find there have been about five hundred visitors from the United States, the bulk of whom hail from New;York and Virginia.
A writer in the London Expositor, a paper devoted to inventions, desigas, art, and manufactures, calls attention to the vehicles from the United States, and argues that they surpass in elegance ofdesign and beauty of workmanship anything of the sort manufactured in England. The same writer also praises the solar lamp by Cornelius \& Co., of Philadelphia, and a bell telegraph from New York. He deems them very important inventions, and as he is a man of weight and judgment, perhaps his dictum will have some weight with the jurors. We fear that the Americans will gain but few, if any prizes, as the jurors, with very few exceptions, are Europeans of various countries, and it is but natural to suppose they will tale cognizance of the improvements of their own nations before those of any other that may present themselves for inspection, no matter how strong their claims.
H. H. P.

## Soap a la Rose

This is made of the following ingredients : - 30 pounds of olive oil soap; 20 of good tallow soap. Toilet soaps must be reduced to thin shavings, by means of a plane, with its under face turned up, so that the bars may be slipped alongit. These shavings must be putinto an untinnedcopper pan, which is surrounded by a water bath, or ateam. If the soap be old and hard, 5 pounds of water must be added to them; but it is preferable to take fresh-made soaps, which may melt without addition, 20
homogeneous paste. The fusion is commonly completed in an hour, or thereby, the heat being applied at $212^{\circ}$ Fah., to accelerate the process, and prevent the dissolution of the constituent water of the soap. For this purpose the interior pan may be covered. Whenover the mass is sufficiently liquefied, $1 \ddagger$ ounces of finely ground vermillion are to be mired, after which the heat may be taken off thepan; when the following perfumes may be added with due trituration:-3 ounces of essence of ose; 1 ditto cloves; 1 ditto cinnamon; 2ね ditto bergamot.

Transparent Soaps.
These soaps were for a long time manufactured only in England, where the process was ept a profound seeret. They are now made every where. Equal parts of tallow soap, made perfectly dry, and spirit of wine are to be put into a copper still, which is plunged in watter-bath, and furnished with its capital and refrigeratory. The heat applied to effect he solution should be as slight as possible, to avoid evaperating too much of the alcohol. The solution being effected, must be suffered to settle; and after a few hours' repose, the clear supernatant liquid is drawn off into tin frames, of the form desired for the cakes of soap. These barsdo not acquire their proper degree of transparency tili after a few weeks exposure to dry air. They are now planed, and subjected to the proper mechanical treatment for making cakes of any form. The soap is colored with strong alcoholic solution of archil for the rose tint, and of turmeric for the deep yellow. Transparent soaps, however pleasing to the eye, are always of indifferent quality; they are never so detergent as ordiary soape, and they eventually acquire a dis agreeable smell.

Windsor Soap.
Take common hard curd soap 56 lbs. , oil of carraway $1 \ddagger \mathrm{lb}$., tincture of musk 12 ounces, English oil of lavender 1 ounce, and oil of marjoram 4 drachms.

Starkey's Soap.
Rub together in a mortar sulicarbonate of potash with oil of turpentine.

## Soap an Boquet.

30 pounds of good tallow soap; 4 ounces of bergamot; oil of cloves, sassafras, and thyme, ounce eact ; neroli, ta ounce. The colo is given with 7 ounces of brown ochre.

Cinnamon Soap.
30 pounds of good tallow soap; 20 ditto palm-oil soap. Perfumes:-7f ounces of ene of cinnamon: $1+$ ditto sassafras; 1 ditto bergamot. Color:-1 pound of yellow ochre.

Orange Fiower Soap.
30 pounds of good tallow soap; 20 pounds of palm oil soap. Perfumes: :7k ounces essence of Portugal ; 7h ditto amber. Color:$9 \downarrow$ ounces, consisting of $8 \ddagger$ of a yellow-green pigment, and 1$\}$ of red lead.

## Musk Soap.

39 pounds of good tallow sosp; 20 ditto palm-oil soap. Perfumes:-Powder of cloves, of pale roses, gilliflower, each $4 \frac{\downarrow}{2}$ ounces; essence of bergamot, and essence of musk, each 3f ounces. Color:-4 ounces of brown ochre, or Spanish brown

Bitter Almond Soap
Is made by compounding, with 50 pounds of the bestwhite soap, 10 ounces of the essence of bitter almonds.

Lowell Mechanics' Fair
We would call attention to the Mechanics Fair which is to be held in Lowell, as setforth in an advertisement on another page. We are positive that it will be a far better dieplay of American inventions, in every department of art and manufacturing, than at the great Exhibition.

The Locust has no Sting
Dr. Gideon B. Smith, the distinguished naturalist, has made enquiry into all the recent reported cases of death an sickness from the sting of the locust, and the result of his inquiry is, that no one hae yet been injured by the sting or bite of a locust.

## (For the Scontifo American. <br> Electro-Maguetiem at a Moring Power. Your paper of the 24th ult. contains some

 remarks upon the subject of Electro-Magnetiam as a moving power, which seem to require a brief reply "at my hands." Firstly,-the writer takes unnecessary pains to show that electro-magnetism is far inferior to steam as a motive power-a fact never doubted by any one conversant with the subject; and he fur ther supposes that persons investigating elec tro-magnetic power are not generally "ac quainted with the economy of steam." I cannot agree with him, but, on the contrary, I do not consider that a person can be well quali fied to investigate this subject without being very likely to possess a competent knowledge of the economy of ateam; and I have never yet met with an investigator of electro-mag. netimm who did not evince an acquaintance with steam power. Upon the subject of steam we have enough written, and "he who runs may read ;" but upon electro-magnetism there is a great dearth of published matter, and the subject itself is recondite and difficult. Your writer, in referring to my preference for the rotary form of the ongine, says, I have "fallon back upon Davidson's and Avery's plans.' As to Davidson's engine, it was fully tested by myself on a large scale in Boston, in 1837, and it was invented and tried in Baltimore by Dr. Edmonson, in 1834. [See Silliman's Journal]. But your writer misapprehends the case: I have "fallen back" upon no one. The rotary form of the axial engine, as well as the reciprocating, differs most essentially from any engines ever before tried. In my reciprocating engines, the magmetic pitton, if I may so call it, is impelled with nearly an equal force throughout the stroke, and this for any length of stroke desired. The rotary axial is the perfection of the improvement, and does notseem to involve the difficulties inherent in rotary steam engines, for my pistons require no packing. When the description of my engine is published, which will be ere long, I think your writer and others will appreciate its peculiarities, and I hope he will suspend his judgment till he has an opportunity of being well acquainted with its details. I have never claimed for electro-magnetic power that it is or would be, superior to steam, that is, in every respect, nor is it necessary that it should be, to answer the purposes of my investigations. The cost of the power has been with me a aubordinate question, knowing full well that other more important questions had to be settled first before ever the cost could be fairly ascertained. The abstract rule laid down by M. Joule, Messrs. Hunt, Scoresby, Oersted, and others, of the absolute duty performed by a given quantity of zinc, is well enough as far as their experimente went, but is of little or no value in the practical question of the avail. ability of this power. To illustrate my meaning, take the highest duty of coal in the best condensing engines in the world; will any one pretend to say that there ta no room for improvement even there? Why, in the Corninh engines, within a few yeare, the expense of a horse-power has been reduced from 10d. to 2d. per diem. But suppose it be admitted that the minimum cost has been attained; how many engines in the world can be worked as cheap as those engines? In reality, M. Joule's calculation makes the expense of magnetic power less than is steam power at the present day in some of our locomotive engines. The cost, therefore, I say, is not the practical question, and if the magnetic power will cost more than the dearest steam power, atill, if we ren. der it an available power in other reopeon, it must come into use for many and parhaps most purposes, by reason of its great advantages over steam in point of safety, simplicity of construction, readiness for operation, compactness of machinery, and, leatly, one very important condition, viz., there need be no consumption of material when power is not wanted for use.Your writer is a friend to progression in art
and acience, liberal and candid, but in running no severe a parallel between magnetic and steam power he disparages the former, and, in effect, diecourages the new enterprise The comparison is unfair for magnetiam, for
it is yet initsinfancy, andsteamis full grown The proper appreciation of magnetic power is to be had :by comparing it with steam in an equal stage of its developement, whenit will be seen that the magnetic power rather car ries the palm. Steam power has not yetreach ed its climax, but it seems as if it were ap proaching its culmination, as its march seems to be comparatively slow; while magnetic power, evidently in its inception, is progres sing rapidly. The first steam locomotive applied in England, in 1804, made, on a level
plane, five miles an hour wrth about 15 tons, and ten years after, the celebrated Mr. Stephenson constructed a locomotive which was considered a great improvement, and carried eight carriages, about 30 tons, four miles an hour; and in 1829, after 25 years of expe rience, (and all the while "invention was sti mulated by necessity"), Mr. Stephenson pro duced his locomotive, the Rocert, whichmade an average speed of 15 miles an hour, with 17 tons, consuming about one pound of coke per mile to a ton, as in the two trips of 70 miles, $1,085 \mathrm{lbs}$. of coke were consumed. With my magnetic locomotive just as it is, I would wil lingly have entered the list with the Rocket in point of power, speed, and expense of work ing. I feel confident, however, that the magnetic locomotive is capable of carrying two loaded passenger cars to Baltimore at the rate of 20 miles an hour, as soon as some of the ery great and obvious defects are remedied. I had lately an opportanity of seoing how great was the friction of the machinery of the locomotive. They have at our atation here, one of the largest and atrongest horses I ever saw, and he is well trained to the work of pulling cars. In removing the magnetic car from its station, this horse was attached to it but was found to be unable to pull it up the grade over which the car was propelled by magnetism 6 miles an hour. It required five men and this horse to get the car over this grade, and it was lighter by two tons than when driven by magnetic power; and moreover, when it ascended this grade at sir miles an hour, the power of the battery was not ful ly up; and I have discovered a cause of grea additional friction when the engine was in action, the remedy for which is obvious.
In regard to the doctrine of Liebig, that the zinc cannot give out more power than thecoal required to smelt it, it is unfortunate, and though entertaining the highest respect for his reputation and ubility, I must pronounce it a practical absurdity. It is reasonable to sup pose that a given amount of zinc combining with oxygen, would not eliminate more heat than would be required to overcome this affinity, but we have no proof of any such relation of electricity to heat as to make the mechanical power of the one the measure of the mechanical power of the other. Whatever nay be the connection and analogy between heat and electricity, we must consider them as distinct forces, in their mechanical rela. tions. In the combustion of coal we develope heat as the motive force, and no electricity ; in the oxidation of zinc in the battery, we develope both heat and electricity, the latter only being the motive force. The absolutism of forces regulating affinities, may be interesting as a matter of apeculation, but, as furnishing a practical estimate for the amount of mechanical or available power, it cannot stand, and necessarily involves the unwarrantable assumption that the whole power or inherent force may be eliminated and rendered available in each case. But Liebig goes still further : he maintains that the heating power of the carrent is the equivalent of its mechanical power through electro-magnetism; or, in othor words, that the heat developed by the pasaage of the current ought to raise steam onough to furnish a power equivalent to the electro-magnetic power of the same current, and from the fact that the mechanical force derived from steam raised by the heating power of the current is so small compared with that obtained by the combustion of coal, he arrives at the conclusion that electro-magnetic power "can never be used." The speculation is thus pureaed-up to a point where facta are brought in to ite aupport, and fortu-
nately where facts enough can be adduced to
subvert the whole doctrine. I will take but one, and one that can be easily admitted; or, riner, I will propound a question: any pairs of plates would be required to perats through tbeir calorific or steam powe e lever of the receiving magnet in Morse olegraph, say through a circuit of 80 miles lasw an experiment some years ago at the his length of circuit, the powder being at th apitol and the battery at Baltimore. Fift pairs of Grove's battery, such as they used for the telegraph, would not ignite a platinum vire one-thousandth of aa inch in diameter It finally required 75 pairs to fire the powder Ten pairs of such plates will work the receiv ing magnet through this circuit vigorously. leave it tomechanical minds here to form their own conclusions. The truth is, that the cost of electro-magnetic power, or any other power, is circumstantial, and the attempt to predicate the whole economy of magnetic power apon the cost of coal and cost of zinc, and the fact that coal is found native and zinc not is, in effect, to make nature's laws and opera ions amenable to market prices and othe contingencies. Yours, \&cc. Cris. G. Page. Washington, D. C., June 3, 1851.
[This communicatian will be answered nex

## week.

## Floating of Rafts.

In number 38, in the article about floating afts, we said, "a person not satisfied with our anewer should sssign a reason." The au thor of the letter therein is not satisfied, and presents his theory; it is this, "rafts are carried to their destination by the force of gravity merely independent of the motion of the we ter in the said direction." The raft," he says, "would float down the river if its motion, (the water's) could be arrested entirely.' This is his theory, and we do not say, we ar not satisfied, he is welcome to his opin nion. But let us show how he reasons against his own theory-he considera the bod of the river an inclined plane, and says, "the water lubricates the inclined plane, and the reater the quantity of water contained with in the bed of the stream, the greater the mo tion of both raft and current, because the dis tance from the bottom and banke, and the portion of the water retarded by friction against them, is thereby increased and the direct motion of the water less interfered with by the revolving or eddying motion consequent on that friction." That's it exactly friend; don't you see it is the water that carries the raft along-that gives it momentum. Now stop the current friend, sccording to your theory and see how fast the raft will travel. Ah you will say, "then we shall have no inclined plane." True, for we never bring up an impossibility to prove anything. We happen to know something about rafting personally We lay down the following imposition;
1st. Rafts are carried by the notion of the current, and receive their momentum from the ater.
2nd. The momentum imparted to the raft deprives the moving body (the water) of a quantity of force equal to that which it, the aft, receives.
3rd. It is gravity which moves the raft, but not its own, it is the gravitating force of the water ; to prove this, a log will lie on an inclined plane of boards of 50 feet inclined to the mile, till doomsday, while it will be mov ad along with the water, having onlya descen of 5 feet to the mile.
4th. A body of less speciflc gravity than another, and partly merged in it, could not move, by the known laws of gravity, unleas the sustaining body moved. This is the case with the $\log$ and the water
5th. The speed of the raft will be accor ding to its form, the rougher and heavier, the ower.
6th. Sorm water moves as fast as the raft 7th. The velocity of the river is accor ding to its incline, form of its bottom, and

8th. The water in the middle of a river has greater velocity than that at the sides, and解 surface greator than that at the bottom - It is common for
rivers to travol 10 miles for the raft's 4, and ye the raft be nearer the end of its jou ney. This is owterg to bendsand contractlon in rivers. Raftemen miow this, and rafte without raftsmen to gnide them make mighty ine trips on rapid crookedrivers-a grea deal faster than the water, eh? Ask an old aftemen. A river carrying a raft is just lik great number of bearers who take the load ne after another and carry it along on their houlders. At every bend of the river, there re two gangs, the one shoots off at an angle and takes a long round about road, and the ther is slower but takes a shorter road ; the afteman takes the slower but shorter road and this is the reason why the raft gets shead of the water.
10. The surface of the water and the raft ill move with equal velocity for 100 miles, f the line of the river is straight and the banks mooth. It is wrong in mechanical langnag say "a body moves by gravity," when it i carried by another.
N. B.-We have recieved a communication from a new correspondent who says "the raft has a tendency to move to the centre of the earth by gravity, and this is what causes it to move, and it would go there, only for the esistance of the earth and water beneath it and the air abova it." He does not appear to be aware that the air on the surface of current of water moves along with it
Next weet we will publish a short commu nication on the subject, which will end the discussion for the present.
(For the Solentifio American.)
Iron Ore in Easex County, N. Y.
Tons of ore raised in Essex Co., in 1850 In Crownpoint-Penfield, 2,000; Ham mond, 4,000-none shipped.
In Moriah-By Goff, 7,000, Port Henry Iron Co. ore bed, half a mile from the lake. By oot, 4,500, Foot's Iron Co., half a mile from the lake. By Hull, 2,500, No. 75 Ore Bed Storrs, 4,000, Rousseau Ore Bed; by Mil er, 500, No. 50 Ore Bed; by Rousseau, 7,000 Rousseau Ore Bed; by Sherman, 6,000, Now Ore Bed; by Lee, 6,000, New Ore Bed-5 to miles from the lake. Doad, 3,500.
Elizabethtown, (supposed), 1,500.
Amounting, altogether, to 48,500 tons of
wore
Very little ore is worked up in Moriah, about alf of it being ahipped to Clinton Co., and the rest to Vermont and other parts of New York, New Jersey, Virginia, and Philadelphia and Pittsburgh, Pa. Mr. Goff has just in ormed me that, owing to the superior quality and richness of his ore, it will pay shipping to Pittsburgh, Pa .
The ore sells on the dock for $\$ 1,75$ to $\$ 3,25$ raw, and for $\$ 2,25$ to $\$ 4,50$, separated.
A new bed of superior ore, about 2 miles from the lake, is being worked this year.
Product of the Moriah ore mines in 1850 $-13,666$ tons raw ore, average value on the lock $\$ 2,25$ - $\$ 30,748,50 ; 27,332$ tons separe ed ore, average value $\$ 3,25-\$ 88,832,25$; to I, $\$ 118,580,75$
But the depression of the iron business and mpetition has shorn mining of its profits.
Port Henry, N. Y., June 6, Clashe Rice
Natural Soap in New Mexico.
John Gorman, Assistant Marshal, who was engaged in taking the census of New Mexico discovered in the Ton of Chimallo, in Rio Arriba county, a substance resembling soap. It makes a lather like soap, and has the property of removing grease apots or stains ont of any kind of cloth. When put in water it im. mediately slacks like lime. At the place where the diccovery was first made, it is even with the surfece, and about fifteen yarde square. It is rotten on the top to about the depth of three feet, but appears cleaner and sounder at greater depths. It can be taken out in large lumps, of ten or fiftoen pounds weigbt It is as white se snow, and seems to exist in large quantities. Specimens have been for warded to the Census Ofice at Washington.

If one ounce of poindered gum trajacenth, in the white of aix egga, well beaton, is applied to $s$ window; it will prevent the rays of the sun from getting in

