${ }^{2}$

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL AND OTHER IMPROVEMENTS.
VOLUME 6.]
NEW-YORK, JUNE 21, 1851.
[NUMBER 40.

Scientific American, circulation 16,000 . published webily At 128 Fulton, street, N. Y., (Bun Buildiag,) and 13 Court street, Boaton, Maes
BY MUNN \& COMPANY, The Prinoipal Offioe being at Now York. A. T. Hotohkish Boston.
Doxior $\&$ Bro. Now York City.

Wold \& Co., Nom Orloana,
Btokes \& Bro., Philadol
Btoken \& Bro., Philadelphia.
R. E. Ed wards \& Co., Cinoinnati, 0.
Jno. Thomson,
Edmards \& Ringgold, Lenisville, Ky.
Oonke \& LeCount, 8ay Franoisoo. Cal
Conkt \& LeCount, Ban Francisco. Cal
Courtenay W Wionges, Charleston, 8 .
John Carruthers, Eavannah. Ga.
Barlow, Payno α Parken, London. Barlow, Payne \&e Parken, Lon
M. M. Gardiszal \& Co. Paris.
Reoponsible Agents may also be found in all the
prinoipal oities and towna in the United Btates TERMS.--s2 a-year---sis in advance and the

Old Canals of Egypt

At a recent meeting, May 20th, of the in stitution of civil engineers, Eng., a paper was read on the Isthmus of Suez and the ancient canals of Egypt, by Joseph Glynn, C. E. It was a very interesting paper. About 600 years before the Christian Era, Darius Hystapis, made a canal from the Nile to the Red Sea. It was in some places 150 feet wide and 30 feet deep. It passed through the valley to the Bitter Lakes, and was navigable for vessels of considerable size when the Nile was high. It also served for the supply of cities with water. The ancients assumed that there was a difference of level between the Red Sea and the Mediterranean, and precautions were taken to prevent the salt water of the Red Sea from miring with the Nile. This canal fell to decay, but wae restored about 644 A. D., by the Turkioh Caliph Omar, who introduced many improvements and brought the canal to join the Nile near to Cairo. The general decay of Egypt broughtabont a decay of this canal again, and it became choked up 120 years afterwards, and for a thousand years it remained so, and was almost forgotten until Napoleon, that wonderful man, went to Egypt. He directed the eminent engineer Le Pere to survey it and report. The length was about 93 miles, through a low barren sandy plainand traversing many lagoons and lakes offering but few difficulties to engineering. Le Pere reported that the rise of high water in the Red Sea was 6 feet, in the Mediterranean 1 foot, and the surface of the former was stated to be very high at high water atove low water in the latter. Mr. Robert Stephenson was present at the meeting, and as he had but recently returned from Egypt, he stated that the low water in the Red Sea and the Mediterra nean were identical, and Le Pere made a great mistake, which he attributed to a hasty survey made in the time of war. The possibility of restoring this ancient canal was discussed. There is a ridge at the present moment at the end of the Red Sea, towards the Bitter Lakes, consisting of fossils identical with those of the London Basin, caused by a geological upheaval which had changed the features of the district. It has been considered that the Bitter Lakes were once the head waters of the Red Sea, and the ruins of oities and towns around, give evidence of the region being at one time very fertile-it was the land of Goshen, wa tered with a fresh stream from the canal of Se sostris, and fromit Lake Temsah was supplied with pure water.

The Viceroy of Egypt has sanctioned th 4 project of a railroad from Alerandria by way of Cairo, to the Isthmus of Suez, and the work will be commenced without delay.蚎

On the 24th of April, 1847, Mr. Robert M. $\mid 4$ is a section of the pump, showing the valves Wade, of Wadesville, Clark County, $\mathrm{Va}_{\boldsymbol{g}}$ and pistons. The two latter figures are on obtained a patent for improvements in ma chinery for conveying the sparks and smoke from the smoke stacks of the boilers of en gines, and for extinguishing the sparks, which has, as it were, been hid in obscurity, but which, owing to so much attention having been given to the subject lately, the public should be better|acquainted with. Fig. 1 is an end elevation of a locomotive, and fig. 2 is a plan view, showing the apparatus combined for drawing the smoke and aparks from the smoke bor, and discharging them beneath the engine and pumps. Fig. 3 is an elevation of the com bined escape steam pipes and cocks. Figure
the steam pipes, F , allowing the excape steam to pass through F , all pipe, E, when said valve is closed. H is a pump combined with the steam cylinder for drawing the sparks and smoke from the smok bor and discharging them wherever required I is the induction tube through which the sparks are drawn by suction from the smoke. box into the cylinder of the pump, one end of said tube being bolted to the end of the plate of the pump cylinder and the other end to the end plate of the smoke-box. J is the educ. tion tube, through which the sparks are driven by the piston of the pump-one end of said tube being bolted to the end plate of the pump, and the other end opening into the air, or into a receiver containing water, or ether suitable place. K is a valve at the end of the induc tion tube hinged to the inside of the end plate of the pump, being open whilst the plston is moving toward the head of the pump, and closed when moving in a contrary direction, represented in figure 4. L is a valve in the eduction tube, arranged so as to close when the valve, K, opens, and to open when the valve, K , closes, being hinged to the outside of the end plate of the pump. M is the piston rod of the steam cylinder. N is the piston rod of the pump. O is the cross-head connecting the piston rods, M, N, together, causing them to work simultaneously in the same direction. $P^{\prime} P^{\prime}$ are the parallel guides for the steam cylinder cross-head. $P^{\prime \prime}$ is the guide for the cross-head of the pump. Q is the crank arle of the valve, G. R is the rod for turning the crank axle. S is the opening in the valve, G, surrounded by the short pipe, S^{\prime}, attached to the valve and closing down over the united ends of the steam pipes, F, which conduct the escape steam through the same whilst the valve, G , prevents the escape of the smoke and sparks through the stack. The valve, G, is brought to a horizontal position for closing the smoke stack when the pump is in operation, and is turned to a vertical posi tion, or opened, when the engine is at rest T T are the cocks for allowing a portion of the exhaust ateam to escape into the smokebor for the purpose of extinguishing the sparks and to prevent the pump becoming over-heated, the steam being partially condensed in the smoke-box. U is an inclined guard for giving the fire a downward direction to prevent the ascent of the same amongst the machinery The pumps are combined with and secured to
Figure 2.

he smoke-bor by means of the braces, Y, and of he steam cylinders, and properly secured manner. A similar pump and arrangement steam-chesta, V, adapted and fitted to the upon them in any permanent and durable of parts are combined with the other steam sides thereof, by making the undersides of manner, by means of double concave pla es, cyllader for a lize purpose, similar letters be the flanges of the pump concave and corres- \mathbb{X}, secured to the sides of the pump and cyponding with the conver sides of the flanges linder by the screws, x or in any convenient The soveral parts of the apparatus may
constructed, arranged, and operated in any convenient way or manner for prodacing results eimilar to the above, by meaps subs tially the same as those above described.
The head of the pump may be made con cave on the inner side, or of an obtuse angle shape, or in two segments or semicircles-the upper segment being stationary and bolted to the cylinder and the lower segment hinged by its straight side to the straight side of the up per segment to answer as a valve for prevent ing clogging from an accumulation of sparks in the pump, the end of the eduction tube bolted to the outaide of the head of the pump being made sufficiently large to embrace and cover thesaid lower segment of the head which is to serve the double purpose of a head and valve-which arrangement would require the eduction tube to be bolted to the circular flange of the pump instead of the head of the pump, as described.
The parallel guides, $\mathrm{P}^{\prime} \mathrm{P}^{\prime \prime}$, are sustained in their required position by the plate, b, fixed to the end of the cylinder, and the plate, z, secured to the frame of the engine by the brace or arm, a. On firing up the engine, the valve, G, must be turned to a vertical position by moving the rod, R, to which it is attached; the furnace and engine being in full operation, and it being required to prevent the sparks escaping from the smoke-stack, the ongineer

Fig. 3.

must move the rod, R , iongitudinally, which will turn the valve, G, to a horizontal position -the aperture in the came surrounded by the additional pipe, S^{\prime}, allowing it to drop over the upper end of the exhaust or escape steampipe, F^{\prime}, thus shutting off the communication between the smoke-box and the smoke-stack, E ; the cocks, T T, are then partially opened, which allow a portion of the waste ateam to enter the smoke-box in quantity sufficieat to extinguish the sparks, and regulated by aaid cocks, the main body of the waste ateam being Fig. 4.

allowed to escape in the usual manner through the chimney or stack, it being unnecessary to allow all the waste steam to enter the amokebox and pumps, as it would create an andue pressure on the several parte.
The following are the claims of this patent, and, with the full evidence of what they are, we would state that Mr. Wade is prepared to sell rights, and any communication addressed to him will be promptly attended to :-
"I claim pumping the sparks from the smoke-bor of a locomotive engine, when the sparks are extinguished, or partly so, by the introduction of a portion of the escape steam through the cocke, T T, substantially in the manner and for the reasons stated. I also claim the arrangement of the valve, G, in the smoke atack, E, as constructed, with the short pipe, S^{\prime}, in combination with the anitod atoam pipes, F, for proventing the escape of the amake and sparks during the oparation of the pums, and, at the same time allowing the waste stoem to escape through the emoke pipe, E . 78
world. The socialists are as quiet as mice, and never did barmony reign so aupremely ge neral as it has during the whole course of the Exhibition from its projection until the pre sent time. We cannot but admire the variou instances of liberality and kindness on the part of many distinguished gentlemen, all of which have been called forth by this monster, as some of the press sneeringly and satirically styled it. As an instance, we see it stated that Lord Leigh has invited all of his nume rous tenants to visit the Palace at his expense, and W. Brown, Esq., Member of Parliamen from South Lancashire, and head of the wellknown firm of Brown, Shipley \& Co , has givon $\mathfrak{£} E 0$ to each of his forty or fifty clerks to enable them to visit, without trenching on their ordinary finances, the Exhibition during the season. Again, the Admiralty have grant ed their dock-yard workmen, for the same purpose, leave of absence for two deys, and we learn they also have agreed to pay a certain portion of the expenses of the artificers who have availed themselves of the permission. A general leave to the army has also taken plac to all regiments at home, from the 1 st of Jun to the 30th : one field officer, half the cap tains, and half the subalterns tu be allowed the indulgence each fortnight in the month We suppose, aloo the numerous Charity Schools will come in for a general holiday, and if we mistake not, ere this, the Royal Commissione has entertained the idea.
We believe. with the single exception of the Russian Department, the Exhibition may now be deemed complete. From some state mente we have seen, the Ruesian collection will be one of the most wonderful and attrective in the Exhibition. The jewelry arrived is valued at $\$ 200,000$, and it is said will quite eclipse the brilliant display sent by the Queen of Spain. Among other matters is a pair of folding-doors, valued at $\$ 40,000$, of most va luable malachite, from Siberia, belonging to the Prince Demidof: There are also chimneypieces, arm.chairs, and cabinet furniture of the same precious stones. There is an enormous candelabrum, in ormula in dead steel, upwards of 14 feet in heighth, and one in sil ver, representing a group of armed lnights dismounting under a fir tree : the workman ship is exquisite, and it weighs upwards of 2 cwt. of silver.
The American Department is called "The Prane," and each country appears to receive some characteristic appellation by which it is known. The American visitora are requested to register their names in a book provided for the purpose, and on a hasty examination we find there have been about five hundred visitors from the United States, the bulk of whom hail from New;York and Virginia.
A writer in the London Expositor, a paper devoted to inventions, desigas, art, and manufactures, calls attention to the vehicles from the United States, and argues that they sur pass in elegance ofdesign and beauty of workmanship anything of the sort manufactured in England. The same writer also praises the solar lamp by Cornelius \& Co., of Philadelphia, and a bell telegraph from New York. He deems them very important inventions, and as he is a man of weight and judgment, perhaps his dictum will have some weight with the jurors. We fear that the Americans will gain but few, if any prizes, as the jurors, with very few exceptions, are Europeans of various countries, and it is but natural to suppose they will tale cognizance of the improvements of their own nations before those of any other that may present themselves for inspection, no matter how strong their claims.
H. H. P.

Soap a la Rose

This is made of the following ingredients : - 30 pounds of olive oil soap; 20 of good tallow soap. Toilet soaps must be reduced to thin shavings, by means of a plane, with its under face turned up, so that the bars may be slipped alongit. These shavings must be putinto an untinnedcopper pan, which is surrounded by a water bath, or steam. If the soap be old and hard, 5 pounds of water must be added to them; but it is preferable to take fresh-made soaps, which may melt without addition, 20
homogeneous paste. The fusion is commonly completed in an hour, or thereby, the heat being applied at 212° Fah., to accelerate the process, and prevent the dissolution of the constituent water of the soap. For this purpose the interior pan may be covered. Whenever the mass is sufficiently liquefied, $1 \ddagger$ ounces of finely ground vermillion are to be mired, after which the heat may be taken off thepan; when the following perfumes may be added with due trituration:-3 ounces of essence of ose; 1 ditto cloves; 1 ditto cinnamon; 2ね ditto bergamot.

Transparent Soaps.
These soaps were for a long time manufactured only in England, where the process was rept a profound seeret. They aro now made every where. Equal parts of tallow soap, made perfectly dry, and spirit of wine are to be put into a copper still, which is plunged in watter-bath, and furnished with its capital and refrigeratory. The heat applied to effect the solution should be as slight as possible, to avoid evaperating too much of the alcohol. The solution being effected, must be suffered to settle; and after a few hours' repose, the clear supernatant liquid is drawn off into tin frames, of the form desired for the cakes of soap. These barsdo not acquire their proper degree of transparency tili after a few weeks exposure to dry air. They are now planed, and subjected to the proper mechanical treatment for making cakes of any form. The soap is colored with strong alcoholic solution of archil for the rose tint, and of turmeric for the deep yellow. Transparent soaps, however pleasing to the eye, are always of indifferent quality; they are never so detergent as ordiary soaps, and they eventually acquire a disagreeable smell.

Windsor Soap.
Take common hard curd soap 56 lbs., oil of carraway $1 \ddagger \mathrm{lb}$., tincture of musk 12 ounces, English oil of lavender 1 ounce, and oil of marjoram 4 drachms.

Starkey's Soap.
Rub together in a mortar sulicarbonate of potash with oil of turpentine.

Soap an Boquet.

30 pounds of good tallow soap; 4 ounces of bergamot; oil of cloves, sassafras, and thyme, ounce eack ; neroli, $\frac{1}{2}$ ounce. The colo is given with 7 ounces of brown ochre.

Cinnamon Soap.
30 pounds of good tallow soap; 20 ditto palm-oil soap. Perfumes:-7f ounces of sence of cinnsmon: $1 \ddagger$ ditto sassafras; 1 ditto bergamot. Color:-1 pound of yellow ochre.

Orange Fiower Soap.
30 pounds of good tallow soap; 20 pounds of palm oil soap. Perfumes: :7k ounces essence of Portugal ; $7 \frac{1}{2}$ ditto amber. Color:$9 \downarrow$ ounces, consisting of $8 \ddagger$ of a yellow-green pigment, and 1$\}$ of red lead.

Musk Soap.

39 pounds of good tallow sosp; 20 ditto palm-oil soap. Perfumes:-Powder of cloves, of pale roses, gilliflower, each $4 \frac{2}{2}$ ounces; essence of bergamot, and essence of musk, each 3f ounces. Color:-4 ounces of brown ochre, or Spanish brown

Bitter Almond Soap
Is made by compounding, with 50 pounds of the bestwhite soap, 10 ounces of the essence of bitter almonds.

Lowell Mechanics' Fair
We would call attention to the Mechanics Fair which is to be held in Lowell, as setforth in an advertisement on another page. We are positive that it will be a far better dieplay of American inventions, in every department of art and manufacturing, than at the great Exhibition.

The Locust has no Sting
Dr. Gideon B. Smith, the distinguished naturalist, has made enquiry into all the recent reported cases of death an sickness from the sting of the locust, and the result of his inquiry is, that no one has yet been injured by the sting or bite of a locust.

