Scientific Ammerican.

MUNN \& COMPANY, Editors and Proprietors pushished wexikly
At No. 37 Park-row (Park Balldiag), New Yorls.
o. d. munn, s. h. wales, A. e beach.

TERMS-Two Dollars per anaum-One Dollarin advace, and the

 rema uder in six mouths.Siagle copies ofthe paper are on onla nt the office of publication
and ni all the periovical stores in the United Stese and Sannpaon Love Son © Co., the American Booksellere Do. 47 ladid Hill, Loondon, lisgland, Gire the Buricican Bookseilera, No. 17 Autidgat 8ee Prospectus ou lans page. NoTraveling Ageutw eniplosed

Voc. VI., No. 3.....[New Serisb.]....Sisteenth Year.
NEW YORK, SATURDAY, JANUARY 18, 1862.
AGRICULTURAL IMPROVEMENTS.
VERY department of
American industry bas been greatly improved within a very few years, and this is especially the case with agricultare. 'This affurds cause for grntitude, berause all liose who are engaged in the professions, commerce and the common arts are dependent upon the surplus products of agriculture for sustenance. The present gear has been unexarapled in productiveness ; the fields have yiclded abundaut harveats, and the orchards have been bowed down with heavy loads of golden fruit. "These blessings," as one said to us recently, "have put our farmers in good beart," and we judge from the cheerfal tone of scveral discussions which have lately been held at agricultaral society gatherings, that prosperity is acting as a wise stimulaut to further enterprising action. With the great amount of intelligence which is now widely uisseminated on agricultural sabjects, old defects and new wants are becoming more generally known. This may surprise mnay persons who have imagined that the field for agricultural inventions was alnost fenced in. Owing to the great number of patents which have been issued of late years for farmers' implements and machinery, many inventors have considered that the range for their efforts in this department was very circamscribed. We assure them such is fiot the fact, and the past affords us good gronnds for this opinion. Foarteen years apo, the yearly issue of agricultural patents was 78; in 1850, it was 664, which is an incrense of eight and a hnli times in these few years. When there were only 78 patents granted in one year, many persons thought that the end of improvements had arrived-that the plow had surely attained to perfection. In his report for 1846, Examiner Dr. Page indulges in a sort of lamentation over the pancity of agricultaral inventions fur that yeagend he concludes with the mouraful apothegm, "farming is ap-hill work." Perfection cannot be attained withoat severe toil, and "there is no royal road to knowledge." Farmiag may be "ap-hill work," bnt the toil of ascending the mountain poat is all forgetten when the summit is gained and the world seems spread out before our vision. Similar results have animated those who have devoted themselves to agricultural improvements. No field for the iaventor's exploration has brought so many rich rewands for new discoveries; and yet wo tbink it is just aboat as inviting as it was fourteen years ago. Although the McCormicks, Mannys, Peelers, Pitts and others have become rich as Crosus by their patent harvesters, plows and grain separators, they have not exhansted the suhject, and it is to tbis particular point we wish to direct attention.

On page 266 of the present volume of the Scientific Axerican, we quoted the opinions of a writer in the New York World, respecting the defecte of common plows and the benefits which woald resalt from an entire revolution in the mode of preparing the soil for planting. A machine which would dig up and thoroughly pulverizo the soil was recommended as a superior sabstitute for the common plows, which merely tarn it over in furrows. This subject was also brontht np at the mecting of the Fnrmers' Cluh. held in this city on the 22d ult., at which the secretary stated that, as there
was to be another World's Fair in London in 1862, he " boped some ingeninus American citizen would invont n practical tilling macbine which would rapidy pulverize thesuil and put it in good condition for planting, and present it at the international exhibition." "Therc is now," he said, "no machine in existence capahle of performing this labor, but I trust one will be bronght out at the exhibition which will reflect credit apon American genius and industry." Here is a new want which inventurs are called upon to supply by those specially devoted to agriculture. Anci if this is the case with such a venerable operation as that of plowing, 1 is reasonable to infer that many other operations in farming, as commonly practised, may also be greatly improved by a new class of machines, whicb will produce a revolution in the modes of execatiag them.

LIGHTING MANUFACTORIES BY WATER

 POWER.The experiments with Way's electric light have demonstrated that a brilliant and constant light may be maintained without any other expenditure than that of mechanical power; but if the power is obtaincd by a steam engine, the cost of the fuel makes the light expeasive. As oar cotton and woolen manufuctories that are driven by water power, almost all have a surplas of power in the winter months, the only peason during which they are lighted, would not the owners find this the best and cheapest plun for lighting tbeir establishments?
An hour glass, containing a supply of mercnry, would be placed in the middle of each room, just ander the ceiling, and insulated wires, passing perfectly air-tight through the glass, would lead to a magato-lectric machine in any conveaient port of the establishment. The wires would connect with the mercary in each end of the glass, and when the magneto-electric machine was turned by the water wheel, the current of electricity passing along the wires, would run through the slender stream of mercary flowing down from the upper chamber of the hour glass to the lower, the light being given oat by the electric current as it darted from drop to drop of the mercurial stream. When the mercury had nearly all run down from the apper bulb of the glass to the lower, it would be necessary to turn the glass over, for which parpose it might be connected to simple clockwork, and the wires would be brought out of it through the axle on which it was hang. A separate machine would probably be required for each light, and the power demanded would be considerable, bat the room would be filled with such a flood of light as was never yet seen in a manufacturing cstablishment, and all the current expense would be the very trifing outlay required to seep the apparatus in repair.
We expect to seb before long the Lowell and Manchester manufactories illuminated at night as brilliantly \rightarrow by day by the ase of electricity in some manner, and anst probably by the magneto-lectrical machine and nercury light of Professor Way.

MOROCCO LEATEER DRESSING.

Although enameled oilcloth, having its surface finished to imitate morocco leather, has come into very rxtensive use daring the past five years, still it does not scem to have injured the manafacture of the genaine article. Morocco dressing establishments are still increasing in number and extent. Real morocco leather is made of tanned goatskin; bat the term is now, in a general manner, also applied to tanned sheepskin, which is colored and dressed witb a polished and corded sarface in imitation of morocco. Haviag been informed that the manafacture of sheepskin into colored leather was carried on extensively, and in a saperior manner, in Albany, N. Y., by the firm of A. Williamson \& Sons -old and experienced leather dressers-we recently embraced an opportanity of visiting their establishment, while briefly sojourning in the capital of the empire State. It is situated near the upper extremity of a street called Broadway, and although this street is verg unlike its great namesake in New York, it can boast of a good morocco factory, in which some new and improved processes are carried on. Colored sheepskin is principally used for shoe bindings, and, in this eatablishment. the majority of the pelts are obtained green from sheep and lambs slaughtered in the vicinity. Abont 100,000 akins are iressed annnally ia it. and fimm thnse ohout half a million pounds of wool are obtained and sold.

The first process through which they are made to pans is that of soaking and sofiening by water, to fit them for recciving the unduiring preparation. Formerly hydrate of lime was sprinkled in the inside of each pelt; it was then folded over with the wool side out and laid down on the floor, somotimes called "the pit." In this manner a whole pile or heap was made, and a heating action was engendered by which the roots of the wool were loosened, ot that the fleece could be ensily pilled or scraped off on a table afterwards. This method of loosening the roots of the wool was tedious, occupying several days to complete, and the skins required constant watching, as they were liable to ovedeat and injury both to the wool and the gelatinous tissuc. This was especially the case in warm weather; bat a remedy for this troable and these ills was lately introduced by the senior member of the firm, and is one of the most important improvements made, for many years, in this art. This is effected by a calcium orpiment compound, which they import and have also introduced among other manufacturers. It is made up into a thick creamy consistency, then applied to the inside of the skins which are folded over, wool side out, and laid in a heap, as bcfore described. In twenty-four hours afterwards the skins can be deprived of their wool, and if they have to lie loager, no injary will result. In all cases the depilatory action is certain withont Injury to wool or skin tissue.
The next operation is that of washing the skins prior to unwooling them. This latter manipulation is executed by placing tbem upon an inclined bench, and rubbing off the wool with a blunt tool. The flesh side of the skins is also scraped to remove slime and loose fiesh, after whicb they are ready for the liming operation. They are now placed in vats containing milk of lime (slacked lime mixed with water), in which they aro treated for about two weeks. The office of the lime appears to be that of a corrosive agent for the removal of grease in the evins, as it would prevent the action of the tannic acid afterwards. The lime does not act upon the gelatinous tissue, which alone forms the Seather when conbined with a tanning agent. A new discovery to shorten and cheapen this part of the process would be invaluable.
The next operation consists in passing the sking through a bath of hen or pigenn manare, mixed with water, which softens them. After this they are washed and passed through a sour of dilute sulphuric acid, whicb neatralizes all the lime that may remain in the pores of the skin, converting it into a sulphate, which is easily removed by a good washing in moderately warm water. After this they are dipped into a solution of common salt, sewed up at the edges with the grain side out, to form bags partly filled with tanning liquor, infated and tied. They are now placed in a tab containing an extract of Sicily samac, in which they float and are kept in constant motion for several hoars; and when they have absorbed a sufficient amount of the tannic acid in the sumac to convert the skin into leathcr, they are takea out, drained and rinsed; and if not to be colored, they are ripped out and dried in the atmosphere in sheds constracted for the purpose. They are sfretched on boards, rabbed out to render them smooth, and tacked down so as to dry without wrinkling. Thesc skins are penerally filled three times with fresh liquor to tan them filly.
Tbe next operation is that of coloring. If the color is to be applied topically by putting it on the surface with a sponge, the akins are first dried. If they are to be dyed in liquors, they are sewed so as to have tbe grain side oat, then mordanted, and afterwards handled in a tub containing tbe coloring agents. Prassian blne colors are imparted by bandling the skins first in a dilute solation of nitrate of iron for about an hour, then in a warm batb containing the cyanide of potash and a little sulphurie acid. A beantiful blae is thus dyed. A scarlet is prepared with a mordant of the muriate of tin and cream of tartar; the red color is afterwards obtnined by handling them in an extract liqnor of coclinneal. Parple is dyed by applping a cochineal color on the top of a Prussian blue. Bronze is obtained from a stronge extract of logwood and alam. After being dyed, the skins are rinsed, stretched on boards, rubbed smoothly down, tacked around their edges and dried.

Toplcal applications of color are piven to the grain surfaces in many infrnnces. 'Shey simply consist of a strong extract applicd with a sponge or a blece of cotion

