RESULTS OF PRACTICAL SCHOOLING.
Ot all schools the most prolific has been the school of dithicalty. Smiles, in his admirable work on "Self IIulp," says:-"Some of the best workmen have had the most indifferent tools to work with. But it is not tools that make the workmen, but the trained ekill and presevcrance of the man himself. Indeed it is proverbial uhat a bad workman nevcr yet had a good tool. Some onc asked Opie by what wonderful process he mixed his colors. 'I mix them with my brains, sir,' was his reply. It is the same with every workman who would excel. Ferguson made mervelous things-such as his wooden clock that accurately measured the hours -by means of a common penknife, a tool in everybody's hand; but then evergbody is not a Ferguson. An eminent foreige savant once called upon Dr. Wollaston, and requested to be shown over his laboratories, in which science had been enriched by so many important discoveries, when the doctor took him into a little stuily, and pointing to an old tea-tray on the table, containing a few watch glanere, test-papers, a small balance, and a blow-pipe, said, 'That is all the laboratory that I have!' Stothard learned the art of combining colors by closely studying butterflies' wings; he would often say that no one knew what he owed to these tiny insects. A burat stick and a barn-door often served Wilkie in lieu of pencil and canvas. Bewick first practiced drawing on the cottage walls of his native village, which he corered with his sketches in chalk; and Benjamin West made his first brashes out of a cat's tail. Ferguson laid himself down in the field at night in a blanket, and made a map of the heavenly bodies by means of a thread with small beads on it stretched between his eye and the stars. Franklin first robbed the thander-cloud of its lightning by means of a kite made with two cross sticks and a silk hankerchief. Watt made his first model of the condensing steam engine out of an old anatomist's syringe, used to inject the arteries previous to diseection. Gifford, when a cobbler's apprentice, worked his first problem in mathematics apon small scraps of leather, which he beat amooth for the purpose, whilst Rittenhouse, the astronomer, first calculated eclipses on his plow-handle. In liko manner Professor Faraday (Sir Humphrey Davy's scientific successor) made his first experiments in electricity by means of an old bottle, while he was still a working bookbinder. And it is a curions fact that Faraday was first attracted to the study of chemistry by hearing one of Sir Humphrey Davy's lectures on that subject at the Royal Institution. A genCleman, who was a member, calling one das at the shop There Faraday was employed in binding books, found him poring over the article 'Electricity' in an encyclopmedia placed in his hands to bind. The gentleman having made inquiries, found he was curious about such subjects, and gave him an order of admission to the Royal Institution, where be attended a coorse of foor lectures deliverod by Sir Humphrey. He took notes of the lectures, which he showed to the lecturer, who acknowledged their scientific accaracy, and was sarprised when informed of the humble position of the reporter. Faraday then expresed his desire to devote himself to the proseeution of chemical studies, from which Sir Humphrey at first endeavored to dissuade him ; but the joung man persisting, he was at length terken into the Royal Institution as an assistant ; and eventually the mantle of the brilliant apothecarys boy fell upon the worthy shoulders of the eqnally brilliant bookbinder's appreatice."

COPPRR monte AND mandig in ARIzONA.

The 8t. Louis Republican mays:-In conversation with a gentleman who has just arrived here by the overlend mail from Arizona, we have learned some gratifying particulars in regand to the copper mines and copper mining in that intoreasing teritory.
There are on the waters of the Rio Mimbres, one of the principal streame thers, Sour mines, some of which are known and othere are beliered to be very productive. One of them, the Santa Rita, has been worised now a little over twelve months, and at chis time giedd two tuns of metal a day. The meane of umelting are not very complete, but the ease with which the copper is extracted is ramartable. The metal is of ea excellent quality, superior to the Lake Saperior, and comparing Fell with the best Rassian. The veins of ore ere numerous, and yield about 25 per cent of copper. This mine is owned by rome Mexican proprietors. The Hanover
mine has been worked rather less than a year. It shows a vein which, at twelve feet from the surface, is fifteen feet thick. This ore is very rich, yielding over $\mathbf{3 0}$ per cent. The daily make is one tun and a half. This mine is owned by Messrs. Hinckle \& Thibault. The two others mentioned are very recent discoveries, but promise very well. In Sact there is no doubt among the best informed in Arizona that copper mines of great richness and fine quality abound there, and that Arizona is destined to be as noted for its products of copper as for those of silver.
There is a good growth of timber on the Rio Mimbres; and no deficiency in the mining localities mentioned of either wood or water.

All that has ever been claimed for Arizona as a depository of mineral we lth seems on the point of being confirmed in full. The silver mines are yieldigg well, and recently a tin mine has been discorered.
[If the ahove-mentioned tin mine is rich in the metal, we look upun its discovery as far more important than the mines of cither silver or copper. At present we are entirely dependent apon imported tin, while we export copper, gold and silver.-EDs.

Cabtifon Water Tower at Lyons.-A new ifon tower has been erected at Lyons, France, on the hill of La Croix-Rousse, and it is designed to raise the waters of the Rhone to a height of 490 feet, for snbsequent distribution on the high grounds of Fourvieres, St. Just, St. Irenee, Oullins, and Ecully. The volume thus raised amounts to from 540,000 to 660,000 gallons every 24 hours. The total weight of the structureis about 110 tuns. The tower consists of a center column, 2 feet 3 inches diameter, of hollow cast iron, around which are arranged in the form of a hexagon six smaller columns of about 9 inches diameter, braced and tied together with wroughtiron connecting-rods. On the the top of these columns is flxed a tank of wrought-iron, 11 feet 6 inches wide by 10 feet deep, h ring ascending and descending pipes of cast iron, 12 inches diameter. Beneath this tank is an open gallery, to which access is gained by a cast-inón spiral staircase winding round the center shaft. The height to the gallery floor is 180 feet, and the total height to the top of the tank is 199 feet. We may observe, in addition, that this tower only forms a small detail of the great works of water supply lately executed. These consist of:-1. A filtering eyparstof, capeble of filcaring 5,500,000 of gallors per twe enty-hours, 2. Three Cornish pumping-eng nes, of 170 horses' powereach. 8. 98,370 yards of pipes' rang ng from 3 inches to 3 feet diameter. 4. 21,860 yards (lineal) of sewers. 5. A system of supply at high pressure to the thind stor, in two services -low service and high service. 6. Monumental fountains, hydrants, street cocks, \&c. The whole of this rast syetel of distribakion cost $\$ 18,000,000$; and, excepting some details, such as the tower we have been describing, was completed in the sbort apace of three years.

Thi Work of the Spinning Jenny.-A century ago the value of all cotton goods manofactared in England was estimated at $£ 200,000$; and when the spinning jenny was invented in 1767, by Hargreaves a carpenter, the yearly exports of cotton fabrics did not exceed that sum. In 1858 the total value of the cotton manufactares exported, including twist and yarn, amounted to 43 millions of pounds sterling. A centary back the total value of the textile fabrics exported from the United Kingdom did not amount to 5 millions; whilst the value of such fabrics exported in 1858 exceeded 69 millions. At the beginning of the present century the quantity of raw cottonimported into England was 50 millions pounds weight. The quantity imported had increased in $\mathbf{1 8 5 0}$ to $\mathbf{6 6 8}$ millions, and in 1858 to a thousand millions of pounds weight, of which the value exceeded 30 millions of pounds sterling.

Looz oft for Fire!-There are few more terrible deaths then fire, get it is extraordinary how little care is taken to prevent eccidents. Many lives and dwellings might be saved from deatruction by properly guarding the gratea. Indeed, with the present fashion of ladies' dreases, in apartmente of moderate sizs, this care is really neceasary; for we fear that it will be long before fire-proof fabrics are brought into general use. We have adopted in our dwelling a brass fire screen, made so as to fit around the grate and cover the whole freplace; thus this fierce element is in a manner caged.

Blanching Celery with Sawdobat.-Having had sume trouble in the winter of 1857 in keeping late celery from rotting in a new kitchen garden, where the soil was very retentive and damp, and the plants earthed up in the usual manner, I havesince used sawdust for the purpose, and find that it answers perfectly. Last winter all the late celery here was earthed up with sawdust, and it kept quite sound till April, and no slugs or insects attacked it underground; the heads being very solid, clear, and crisp, and well flavored. I had some doabis that the sawdust from resinous trees might give the celery a disagreable flavor, but on frial I found that not to be the case, and the sawdust is now taken indiscriminately from the sawpits, where different kinds of trees are sawn up. Before the late severe frost occurred in October, I had just finished the earthing-up of all the late celery with sawdust, and I find it now wonderfully fresh, the frost not having penetrated far through the surface of the hearts. The practice of using sawdust may be new to some, yet I often hear of the difficulty of keeping late celery from rotting in winter, and the more extended use of sawdust may be of advantage to other g rdeners who, like myself, have stiff and damp soils to manage.-Correspondent of the London Gardeners' Chronicle.
Peach Trees for Fisewood.-It seems a monstrous proposition to grow peach trees for firewood, yet the C lifornia Farmer maintains that it will "pay" to the grower ; and, if so, that is enough. The above paper says:-
"Firewood is a heavy tax, and the value and price will increase for years unless we have railro ds to the mountains and woodlands, that we may have access to them. We have several times reverted to the value of the peach tree as firewood, and we sk a serious attention to what will be found true, that there is no tree that can be planted so cheaply, of thatwill grow so quickly, as the peach, and while it is matoring for firemood, the froit will pay for the labor three or four times. A thousand acres can be planted on some land of little value, say a sandy, gravelly highland. The peach-pits can be pl nted in furrows made with a plow in straight lines, sixteen feet apart, and covered with the plow again. The fruit that falls the swine can eat, and nothing is better for a swine-pasture than a large peach-orchard. The good fruit can be gathered, cut and dried, and shipped abroed with profit. In six or eight or ten years the trees will have reached asize fit for firewood, and there is no wood grown on the earth that is snperior to it. Whoever wishes to make his 'pile,' can do so with a little expenditure, for this will be done by somebody."

Mafaging and Feeding Working Oxen.-Oxen working on a stone-drag, on the foot of a plow, on the sled tongue, cart spire, or twitching stones or timber, should carty their heads up, as this enables them to do this work much easier : thoee that work as leaders, forward of other oxen, should carry their heads low, and have the yoke the right length, let the bows suit the neck; the yoke and bows to the leaders should set a little snugger than the nib oxen. Never ase the whip but from necessity. When about to strike the young steer or ox, ask yourself, "Will he know what I strite him for ?" Let each ox have a name, and be sure he knows his name. Never speak a word to an $0 x$ without meaning; have a particular word to start your team by, that all may pull together. Never hurry your team while riding behind them, lest they learn to haul apart. Oxen should be shod with a broad shoe, to travel on hard roads; the shoe on the forefoot should set beck at the heel, nearly halp an inch furiter than the hoof bears upon it. Oxer are frequently lamed by reasan of short shoes. The beat feed for oxen at hard work, is to give to each two quarts of meal, wet mixed with good chopped hay, three times a day, and as much hay as he will ent ; this is the highest feed working oxen onght to have, and on this they will work every day.- Yablee Farmer.

Latrant Ligit.-At the late meeting. of the British Scientific Association, Bir D. Brewster exhibited a piece of chalcedony, within which a minute landecape could be seen. If kept in total darknese for four hours, this marvelous picture vaniabed, but reappeared as vivid as ever on ten minutes exposare to the sunlight ; proving that not only could a design be mysteriously insinuated into the interior of the mineral, bnt that light could be stored up therein and produced at will. It was surnised that this effect had been produced by theaction of nitrate of silver.

