## 

Improvement in Tailors＇Measures． Mr．C．S．Gates，of Morrisville，Vermont， has invented an improvement in measores for taking the dimensions and proper form of the human frame，for the purpose of cutting gar ments to fit the body in the most proper man－ ner．He employs flexible moulds，having per－ forations and numbers in them，which，being laid upon or applied to the human body，in． dicate the exact points for cutting the gar ment to the proper shape to suit the person measured．The oeneflts of a flexible measur er to delineate the shape，are apparent，know－ ing how variously modified human frames a＇re and how difficult it is to fit some persons Measures have been taken to secure a patent

The Manufacture of Barrels by Machiners． We perceive in great numbers of our home exchanges an article quoted from the Glasgow （Scotland）Daily Mail，describing an invention recently introduced into that city for the ma nufacturing of barrels by machinery．It would appear that many in our country are not aware of the existence of machinery here for manufac turing barrels from the stave－completing the barrel by continuous operation．The readers of the Scientific American，however，know this to be true．Barrel machinery is now o a somewhat old date in America．In thia country，celebrated for an abundance of the finest timber，we have also the best mashine for working in wood．In 1827，we think，the first patent for dressing staves by machinery was taken out by a Mr．Win．Hale，and since that time quite a number of other machines have been invented．We have published en－ gravings of three of them，and there are one or two in existence which we have not yet had an opportunity of illustrating．

Ships＇Cable Nippers．
Mr．Robert Diron，of Brooklyn，N．Y．，ha invented a new and useful contrivance for at－ taching the cables of ships to the messengers employed in treuling them up，for which he has taken measures to secure a patent．The nippers consist of metal jaws hinged together at one end，whereby they are easily closed and released，and in the inside the jaws have re－ cesses，which，when they（the jaws）are clo－ sed，form openings in which the cable and messenger are held secure from dragging end－ wise，by knots，if the cable be of rope，or by the links of the chain．These nippers are far su－ perior to the rope kind which are in common use．

Improved Mortising Machine
Mr．Avery Kinney，of Homer，Cortland Co．， N．Y．，has invented and taken measures for securing a patent for some very valuable im－ provements in mortising machines．He em－ ploys two tables or bed pieces，one upon the other，the upper one，across which the boring frame travels，slides in the direction of its length over the second，it being operated by rack and pinion，and so connected and opera－ ting together as to admit of the auger being moved or set at different points on the timber without loosening the machine and re－fixing it，in the manner required by other mortiaing machines．

## Improved Fence

Mr．Robert McConnell，of the city of Pitts－ burg，Par，has invented and taken measures to secure a patent for improvements in picket fences，whereby he unites the fence by tie rods passing through the pickets and interme－ diate pieces，in combination with loose swi－ vels，so that the different sections of a picket fence can be put together in a very cheap and expeditious manner．

## Endless Printing Preso．

Mr．J．O．Osborne，of Akron，O．，writes us he has projected a printing press，by which hethinks he shall be able to print a Bible in one second of time．The idea embraced is，to have the forms stervotyped and curved for cylinders，and to have the cylinders so duplicated as to print both sides of the paper or book at one opera ${ }^{\text {tion．}}$

Aquatie Velocimeteroo－Ships＇Way Measurer ［Continued from the First Page．］ 9，on its top，taking a socket in the lower en of a short vertical arbor， 10 ，as shown by dot ted lines in figures 1 and 2；the arbor goes through the top of the box，$e$ ，and through th plate，$a$ ，of the frame，beneath which a se collar，$g$ ，and pin，11，keep the shaft， 10 ，from rising off the wheel，$f$ ：above the plate，$a$ the arbor， 10 ，has a pin， 12 ，that takes a two part slot in a socket，$h$ ，at the lower end of
 the hand， 22 ，which counte miles up to one handred in number；the canon arbor is fitted with a pinion of sixteen teeth that gears into wheel，$w$ ，of eighty teeth，this wheel rotates freely on the arbor， 27 ，with a hub that is formed as a pinion，$x$ ，of thirty teeth which gears into a wheel，$u$ ，of sixty teeth，this is set on the second canon arbor which goes through the face，just short of the first canon arbor，and carries the hand，23，which counts tens of miles，up to one thousand miles ；$y$ is the dial plate，and three sets of divisions；$z$ is the basil，carrying 24，the glass over the dial，and at 25 an opening and door is shown， by whioh the fingers can be introduced to reach the socket， 16 ，to set the hands in unity at the time the akip is taking a departure，and thereby avoid removing the glass and basil， and yet set the hands in unity，without touch． ing them．The parts are shown as in a ver－ tical netal box，placed on a pedestal，but the whole may be placed on or in a box，or frame of wood or metal as taste or convenience may dictate．
The operation and timing of the perts and the proportions of the gearing having been stated，it will be seen that forty tums of the worm，7，will give the wheel，$f$ ，one turn，in one hundred and sixty feet，or thirty－three turns in one mile；the pinion，$l$ ，of 12 teeth

The arbor，$k$ ，carries the leading pinion，
f twelvo teeth，this gears into a leadin of twelvo teeth，this gears into a leading
wheel，$m$ ，of sixty－six teeth，set on a spindle， 15，which goes through the upper frame plate， 4，and finishes with a short equare heving round end above it，these parta receive the socket piece， 16 ，of the coupling rod，$n$ ，fitted to the top of the spindle， 15 ，so that the coup ling rod，$n$ ，may be first lifted and turned to eet the register hands above，and yet not be the detached off the spindle， 15 ．The to
therdinary accidental interference，by fitting the vanes or paddle－blades，$B$ ，into a frame， constructed with grooves to slide on ribs in a tube or pipe，the lottom of which supports the frame by a bead or fianch，surrounding a disc， $a$ ，carrying the frame，$b$ ，that cuts off or pre－ vents the effects of any vertical motion of either the ship or the water on the paddle－ blades， B ，to destroy the accuracy of the in． strument，and fitted to act on the line of mo－ tion，so that the motive parts of the Veloci－ meter can be withdrawn，for any needful pur－ pose，and again replaced for use；nor does he know of any similar instrument for these pur－ poses，that is made to operate as a standing regiater of the whole distance a ship has ac－ tually run，either with or without a direct re－ ference to time，during any portion of the dis－ tance，by the operations of the vanes or blades， B，through a rod in the tube，A，upon a regis－ tering set of clock－work wheels and hands， which the present description and engravings show as registering fractions up to one mile， and from one mile to one hundred，and thence to one thousand；so that by increasing the number of wheels and pinions，the registry may be extended to any desired distance；and the inventor does not intend to limit himself to the stated extent of the numerical registry， or to the sizes and proportions of the parts， but to vary these as may be needed；nor does he mean to be limited to the mode shown，of atting the moving parts，but to add any me－ chanical means for lessening friction，and wear，whenever and wherever practical use may evince the propriety of so doing
It will of course be understood that the mo． tion of the ship is estimated as when moving in still water，and that any known currents are to be added，when in favor of the ehip， and deducted when against her
We hope this invention will receive the strictest attention from nautical men．

