IMPROVEMENT IN PLOWS.

The accompanying engraving is a perspective view of an improvement in plows by Mr J. C. Cloud, of May's Landing, Atlantic Co., N. J. for which a patent was granted on the 6th of last February. The improvement relates especially to what is termed "an aux lary furrow side."
A is the mould board; B is the auxiliary furrrow side with a curved conosve shear, C. This shear is a section bell shape, with its upper edge projecting over and forwards so as
to act upon the surface of the mould that is turned over. It is well known that the perfection of plowing consists in turning over perfectly the moulds so as to turn under the ward, or otherwise what was the exposed sur face. This "auxiliary furrow side" forms a broad bearing at the heel of the mould-board and so acts upon thesurface as to turn it un der ifany is exposed, while at the same time it breaks it nearly like a harrow. This auxili ary piece is fastened by bolto and loops, or it

may be cast in one piece if desired along with |share is fastened to the plate which has a te the mould board. The cutter extends down on the land side to the bottom of the plow, and is fastened by a mortise through it, which rebut it is believed they will be sufficiently un ed to the mould board. The plow point and by letter addressed to Mr. Cloud.

WALKER'S PATENT IMPROVED SHEET METAL FOLDER

 Figure 1.

This improvement is the invention of Mr. Jabez Walker, of East Bloomfield, Ontario Co., N. Y., and a patent was granted for it on the 1st of last April. Figure 1 is an isome trical view, and figure 2 is a vertical section. The same letters refer to like parts.
The nature of this invention consists in the employment, in connection with the movable or clamping jaw and folding tumbler, of devices for holding down the jaw and securing the plate during the process of folding, and for throwing up the jaw and releasing the plate after the folding is performed.

Fig. 2.

A is the led of the machine ; B B are stand arde ; these parts may be of cast-iron with the top edge of the bed steeled or chilled. a a are two bars on the back of the bed, the back ends of which are supported by feet, 6 l . C is a povable swinging jaw of the are jointed by pins, $d d$, to the back part of the bara, a a. The lip, e, of the movable jaw is very thinand made of steel. Its front edge is flush with the front edge of the face of the bed and is of the same length. There is a
omall apring, l, on each bar under the arm, c,

currier's shavings ara put into a steam boiler

 every week, it is said that no incrustation will be formed, however hard the water ma be that is used.the bed, A, and is keptin that position by resting againat the front of the bed ; the recessed part, 5 , of the cams, $g b$, is then over the friction rollers, $v v$, and the levers, $E \mathrm{E}$, not being depressed, the jaw, C , is thrown up by the springs, l, and the lip, c, is consequently pen or raised. The plate or sheet of metal to be folded, represented by a line, is then put in at the front, between the lip and the bed, and pushed up to the gauge, the handle is then thrown back, and as soon as the projections, 6 , on the cams come in contact with the riction rollers, $v v$, they press do wn the levers, E E, which, by meang of the bar spring, F, and screws, pull down the jaw, C, and compress the plate tightly between the lip, c, and the bed, preventing its being drawn back while being folded; as the tumbler is thrown over, the circular parts of the cams continue to bear on the friction rollers and keep the plate secure, the plate being bent backwards until the tumbler reaches the back position, by which time the fold is complete. When the lever, H , is thrown back to its original position as at first described, the jaw, C, will be raised by the springs, l, and the plate may be removed, the fold or lock being perfectly formed.
More information may be obtained by letter addressed to Mr. Walker.

Noiseless Wheels.

In this instance the invention consists in the application of a solid band of vulcanized india rubber over the iron tire of the wheel. The india rubberis heldin its place by thetire having a raised rim on both sides, and by its own elauticity. The band of an ordinary carriage wheel is about an inch to an inch and a half inthickness, and, unless on close inspection, no difference from the common ironshod wheel is perceptible. We have driven some distance in a carriage with the wheels so shod, and were struck, not only with its noiselessness, but at the perfect sinoothness of the motion-the wheels being, in fact, springs, and, by their elasticity, giving a lighter draught than with the iron tire. We have seen one set of wheels which have been driven 4,000 miles, they have here and there a trifling cut but show no appearance of being worn out, and seem quite capable of another three or four thousand. An iron tire is generally worn out in 3,000 miles, so that the india rubber tire has so far proved itself the more lasting. It is certalnly a great addition to the luxury of a carriage to have it run without jar or noise; and it would be a universal comfort to have the streets of cities without the present incessant rattle of carriages, omnibuses, etc.

To Make Artificial Marble and Stone.
The following is the condensed specification of a patant granted to Selim R. St. Clair Massiah and published in the May number of " Newton's London Journal and Repertory of Inventions." The material of which the arInventions. The material of which the ar-
tificial stone is made is plaster of Paris. After it has been prepared and of the right shape, it is dried in a room at about 80°. When completely dry, it is immersed in a warm soIution of borax and glauber cults, prepared by dissolving 1 lb . of borax and a quarter of an ounce of the salts in one gallon of water, as a ratio. After the casting is thoroughly wet a ratio. After the casting is thoroughly wot
in this, it is removed to the drying room and in this, it is removed to the drying room and
exposed to a heat of 250° Fahr., until all the watery parts are thrown off. It is then permitted to get nearly cold, when it is immersed in strong hot solution of borax, to which has been added one ounce of strong nitric acid for every gallon of the borax solution. This solution is kept quite warm, and the castings kept in it until they are completely saturated when they are taken out anil dried and found to have acquired a marble like hardness. A day or two after this operation the castings are slightly heated and covered over with a thin coat of Canada balsam dissolved ln turpentine, after which they are bept warm until the turpentine is driven off. Various colored substances may be used along with the materials specified to color the artificial marble, such as indigo for blue and other substances
for other colors. The marble may also be st reaked and beautifully variegated.

