For the Scientifio American.

The Motion of the Earth Rendered Visible.
[We sequest the particular attention of our readers to the following perspicuous description of the new beautiful experiment which demonstrates the motion of our planet.]
The accounts of the interesting exhibition now being made at the Pantheon, in Paris, brought to us by the foreign papers \& fortnigh t since, employ methods of illustration that, to some minds, are obscure. The following may prove less bo:
Suppose a pendulum at the North Pole vi brating across a circular table. As the plane (or direction) in which the oscillation takes place does not change, while the table below revolves with the earth from west to east, the pendulum will approach an observer at each oscillation from a new point, its plane will seem to revolve. In twenty-four hours the plane of oscillation will have completed an entire revolution from east to west around the earth's axis: or, more correctly speaking, the plane having been at rest, the earth will, in twenty-four hours, return to its former posi tion.
Suppose now, for convenience of illustration the earth nerthward from this meridian of la titude to be fiat, the table to be extended from the pole on every side to the meridian, and over it a pendulum of proportional length to be suspended. What is true of the lesser ta ble will be true of the larger : it will revolve with the earth. The pendulum thrown into oscillation above, will continue to oscillate in the plane of its first vibration, and will seem to be approaching an observer successively from points farther to the right.
Now, conceive a small table in the margin of the larger, and over it a lesser pendulum made to oscillate in a plane parallel to that of the larger pendulum. As the lesser table revolves with the larger, it will, in twenty-four hours, accomplish a revolution-not around its own centre, but around that of the larger table, and the lesser pendulum oscillating continually in a direction parallel to that of the larger, will perform an entire revolution round the table. If the larger table and its pendulum be omitted from the illustration, we shall, with a little modification, have the phenome non now exhibited at the Pantheon
At Paris, the time required for the return o the pendulum toitsfirst point of departure, is more than 30 hours (30 hours and 40 minutes). That the time must be more than that required at the poles (24 hours) will b 3 obvious if we refiect that at the equator the plane of oscillation of the pendulum, with regard to the poles or any
volve.

Any where between the poles and the equa tor the time will vary from 24 hours (the least time) to infinity.
In a latitude lower than that of Paris, the time required for the return of the pendulum to its first point of departure, will be more than 30 hours. At Boston it will be 35 hours and 36 minutes, a quantity obtained by dividing 24 by the sine of the latitude.
These facts suggest a new method of determining latitudes: the arc through which the plane of oscillation sweeps in a given time bearing a certain relation to the distance from the poles.
The above experiment has now heen ten days on exhibition in the Laboratory of the Scientific School at Cambridge, and has been the centre of considerable interest to persons in the vicinity. The pendulum is 36 feet long, and consists of a slender copper wire less than a medium sized pin in diameter, suspending a pear-shaped weight of four pounds. A few lnches above the weight a wooden circle is erected, and upon it, on opposite sides, are placed two movable cards, subdivided by the same number of vertical black marks, an eighth of an inch apart, the centre lines of the two cards being diametrically opposite to each other. When the weight is drawn to the rim of the circle, so as to bring the wire of suspen
sion against the extreme right division on the P
card, and, after coming to rest, is permitted to sweep, it reaches the extreme left division on the opposite card. The advance of each indi vidual oscillation cannot be readily seen, bu after sweeping two minutes, its progress be comes abundantly apparent, and in about 20 minutes it advances nearly an inch, or speak ing more correctly, the earth advances that distance while the plane of oscillation remain unchanged.
It may not be uninteresting to your readers to know that this beautiful experiment is so mple that it may be readily repeated in most of our dwellings. Wherever a clear space of from 25 to 40 feet in height, even if it be not more than a foot in breadth, can be command ed, there the experiment may be made. Th continuous stairways, from the first floor to the attic, in many houses, provide the desired space. Over this a screw, driven into the ceil ing, furnishes the point of attachment. From the screw, by a slender copp :r or iron wire, o a diameter less than that of a medium-size pin, a weight of about four pounds may be uspended.
An ordinary steelyard weight, of the large size, attached to the wire, not by the hool bu by the eye to which the hook is fastened, will answer the purpose well. The weight should come within two feet of the floor; place two chairs, cack to back, at the extremes of the sweep of the pendulum, some four feet apart, and fix by pins a strip of finely ruled paper (the lines perpendicular) on the top piece of the back of each chair-on the back of th chair more distant, on the inside or front of the chair nearest the observer. Now, having tied a thread around the weight, draw it near to one of the vertical marks. When the weight and the wire have come entirely to rest burn the thread, and the pendulum will com mence its oscillations. Note the point of de parture, and the mark to which it sweeps o the back of the chair opposite. It will be ob served in a few moments that the pendulum will return to a mark a little to the left of tha of its first departure, and will sweep to a poin corresponding distance to the right of th mark on the chair opposite W. H. Cambridge, May 8, 1851.

For the Soientifio American Hydraulics.
(Continued from page 2ヶ2.) Fig. 49.

We select the accompanying figure from the MS. of Mr. Z. Parker to illustrate the application of his water wheels and air-tight drafts, to falls of great height. This subject is one or which we solicit the strictest attention, because it is so important, and opens up a new field of Hydraulic Engineering

Fig. 49 is a vertical section across the axis of the wheel with elevation of draft chamber and double helix.
Figure 50 is a vertical section through the a sis of the wheel with the drums, Q Q, (in broken lines) on the shaft, A is the main disc, B B draft chambers, C cylindrical penstock D is the cover, E is the draft tube, F is the induction tube, G is the column to support the main disc, H is the pit wall, W is the wheel S shaft, $i \boldsymbol{i}$ journal pillows, \mathbf{O} is the double helix sluice, V is the double helix partitio forming sluice, h is the gate.

Fig. 50.

The engravings, without the conduit from the mountain, exhibit the application of the wheel to a fall of 100 feet, and of 1,320 horse ower.
Dimenstons.-Orifices of wheel, 400 square nches; diameter, 44 inches; 9,597 cubic feet of water discharged per minute; working peed of wheel, 363 revolutions per minute drums 5 feet 4 inches diameter; epeed of belts 6,084 feet per minute; tension $7,110 \mathrm{lbs}$. (71 bs. each belt); width of belt, 13 inches at 40 bs. tension per square inch; downward presure on main diec, 894,700 lbs.; upward pres sure of water on penstock cover, 548,880 ; pres ure per square inch at bottom of penstock $26,47 \mathrm{lbs}$; diametor of pulleys on a line of shafts of the mill for 150 revolutions per min ute, 12 feet $1 \frac{1}{4}$ inches.
We shall give the estimated cost of a whee of this kind in our next. We shall also pre sent Mr. Parker's views on the system.

Treatment of Cancer.

We have had occasion before to call the atten tion of our readers to the success with which Dr Samuel Gilbert, of New Orleans, has treated the horrible disease of cancer. We have no done this without positive and satisfactory as a surance of the facts being beyond a question. We learn that ex-Governor Tucker, of Missis sippi, was induced to apply to Dr. Gilbert in his own case upon the strength of our endorse ment, and we have since been informed by let ter, and we also notice the successful issue o his case in the New Orleans Delta, a journal of undoubted standing. With this and other corroborating testimony we feel that we are doing the community good by publishing the case of Wm. Baldwin, which was communica ted to us a few days since. The editor of the Delta, under date of April 28, says he saw Mr Baldwin, and bears testimony to the facts we present below, which are given in Mr. Baldwin's own words
"About eighteen years since, 2 cancerous affection made its appearance under my left and deeper bed in size, 1 applied to Dr. Hubbard, a highly respectable physician, then of Natchez, who prescribed for me, but hefrankly stated that he considered the case a very doubtful one. Subsequently, I applied to Dr. Crane. His treatment failed. In 1848, in company with Dr. Rex, I went to Philadelphia and consulted Dr. Mutter, a distinguished professor of surgery. He advised against the use of the knife. He candidly said that he considered the case incurable, and that I had better submit with fortitude to my fate. Now, despairing of getting cured, I returned home to endure it with patience and resignation. On the 18th of April, having in prospect of a speedy death, I was pursuaded
to put myself under the care of Dr. Gilber At that time my vision was almost entirel destroyed, the cancer had affected my nose, the adjacent bones had become diseased, and even occasionallally rotting out. I was under treatment until the 15 th of June, and thanks be to God and the miraculous skill and perseverance of Dr. Gilbert, I am now well. Without the aid of a knife, he remoyed the cancer and a part of the bone. My sight has ceen restored, and my general health is good. have been a resident and planter of Jefferson county in the State of Mississippi, in the same settlements where I now reside, since 1800. I am a member of the Baptist Church, and in gratitude to God and the truly eminent man who has snatched me, as it were from the grave, I make this statement for the benefit of my fellow-sufferers.'
We learn that Dr. Gilbert intends to make this city his permanent residence before long. Old Oil from the Sea
A Plymouth paper states that fourteen forty. gallon casks were thrown on shore at Marronet Ponds during the late gale, containing linseel cil in good condition. The casks were covered with barnacles, and considerably decayed, showing that they had been in the waer a long time, and all that remained of the iron hoops were the marks of rust. The Boston Advertiser thinks they came from the brig Hollander, of Boston, from Rotterdam, which was lost in Massachusetts Bay ten years ago.
The French have at last claimed the honor f being the first inventors of the locomotive but such claims will not be easily admitted.

LITERARY NOTICES.

 Char C , pape. It is, unqualifiedly, one of the best literary
papers in our cuantry, and we hope our southern riends will not forget that they have so good a paper
mong them. Torins $\$ 2$ per annum. Dictionary of Mechanics and Engine Work.Dictionary op Meceanics AND Engine Worx.
No. 28 of this able work, published by D. Appleton
Co., New York, contains articles on the Mechanio \& Co., New York, containg articles on the Mechanic
Powers, Mensuration, Metals and Alloys, Metallurgy, oowers, Mensuration, Me tals and All
the Micrometer, and the Microscope.
"Leonard Normandale, or the Three Brathers," isa very ably written romanace just from Brathers, is
Long \& Brother, 43 Ann at. ; 25 ots.

MreHAMIGS

INVENTORS MANUFACTURERS.
The Best Mechanical Paper IINTHE WORLD ! SCIENTIFIC AMERICAN. The Publizhers of the SCIENTIFIC AMERICAN
respeotfuly give notioe that the Bixtr Vol of this valuable jou nal, oommenoed on the 21 st of September last. The oharaoter of the Sci-
mNTIFIC AMREICAN is too well known throughout
the country to require a detailed account of the vae country to require a detailed account of the va
ioun subjects discusseá through its oolumna Ious subjects discussed through its olumnas.
It enjoys a more extensive and infuential cireulain than any other journal of its olassin America.
It is published weekly, as heretof ore, in euar

the Arts and Sciences.
It also possesses an ourenal feature not rand
 ficiol List of PATENT CLAIMS, prepared ex-
pressly for its oolamna at the Patent
constituting it the " $A M E R I C A N$ REPERTORY F INVENTIONS." $\$ 1$ for six mnnths. TrRMs- $\$ 2$ a-year; $\$ 1$ for six mnnths.
All Letters must be Post Paid and directed to
MUNN $\&$ CO Publishers of the Scientific American
128 Fulton
Atreet,

INDUCEMENTS FOB CLUBBING. Any person who will send ua four subsoribers fo
ax montha, at our regular rates, shall be entitled
to one copy for the Bame length of time ; or wo 10 copies for 6 mos., $\left.\$ 8{ }_{12}{ }^{10}\right|_{20} ^{15}$ copies for 12 mos., $\$ \%$
 subscription
full value.

Put

