BENJAMIN SEVERSON＇S IRON BRIDGE．

This bridge is the invention of Mr．Benjamin

 Severson，Schenectady，N．Y．Fig． 1 is a perspective view of the bridge； it is cambered about 1 in 80 or 100，or a ver－ sed－sine of 1 to a chord of 80 or 100－the whole combined forming a trussed girder－a portion of a great circle．The sides or body of the trusses，when made of cast－iron，will be composed of pieces，or voussiors，with their upper and lower parts corresponding with the circle；their ends radial and the whole，togeth－ er with the cable underneath them，to have one common centre．Thus，the upper and lower parts of the voussiors，and the tie be－ neath them，will form three concentric arcs．

 shortest of three arcs；and it will be impossi－highest part of the cambered tie；but it is ble to bring the three arcs down to a straight important to have at least one of the ties in line，（they being held parallel by means of the each truss cambered，as they will in this situ－ radial rods，）without extending the tie or shortest arc to the length of the two rigid arcs above it ；or else compressing the two arcs to the length of the tie．This arrangement will insure a tightening of the whole system under the pressure of a load，and prevent the tie from becoming slack under any depression of tho structure；but it would be otherwise if the tie were not acompanied by a longer and rigid
ation more effectually prevent vertical vibra－ tion；and for canal bridges it is important，in any ituations to room for the passage of boats，and yet keep the ends of the bridge as low as may be． To guard still further against vertical vibra tion in railroad bridges，a small wire cable or wrought－iron bar may be substituted and used ensionally，for the longitudinal bindil．r effect tensionally，for the longitudinal
of the caps represented in Fig． 2.

The quarter－braces，made of wire cables or rought－iron rods，starting from the ends of the upper arcs and connected at different points the lower parts of the voussiors，add much the strength of the structure．At the mid le of the length of the truss，the positive and negative forces act horizontally on the abut－ ments．The amount of vertical presure a intermediate points，is in proportion to the distance of each point from the ends of the middle of the truss；and regarding these bra es as resultants，acting in the direction of their length，an analysis of the forces wil how that the amount of vertical support gi ven by each brace，will also be in proportion

to the anount of vertical pressure occurring at their several points of construction with the lower part of the truss．And these braces be－ ing connected to the end pieces，opposite of screws made to press firmly against the ends of the arc，the arcs being cambered，it is evident that any downward bending of the structure will produce a horizontal thrust of the ends of the arcs against the upper ends of these braces；thus regulating the intensity of their tension，by the amount of pressure of a loadon the Bridge，－hence，the amount of ver－ tical support，rendered by each brace at its upper end，from the end of the arc bearing against it；thus the tension of the braces will at all times act with an intensity in propor－ tion to the pressure of a load on the bridge．
It will be observed that the action of these braces comes within the length of the truss，
and does not depend on a tower outside of it， therefore the whole will be alike affected by variation of temperature，or contraction and expansion，and as the braces are straight they will not produce any undulating，vibra tory motion，which is entirely incompatible with the safety of a rigid structure；but undu－ lation will always occur where the catenarian form of braces or suspenders is usec，whether attached to a tower or confined within the length of the structure．
In No．1，at F，is represented a portion of the floor as seen from above．A the upper rail，or arc．G G and H H the quarter－braces E ，end pieces．At B is half the bridge as seen from below．D D bottom of end pieces C C main cables，or ties．The sway－braces and under side of girders between C C at B． No． 2 represents the manner of joining the
upper parts of two adjacent voussoirs，with a cap embracing circular raised parts of each； the cap，being held down by means of a screw and nut at the upper end of the radial rod， will bind the voussiors firmly together，and the joint between the three parts being circu－ lar，is simple and not liable tofracture，should any change occur in consequence of a slight ettlement of the structure
No．3．－A is the end of the girder．B B lower part of voassoirs．C outside brackets made concave to correspond with the concave end of the girder，for the purpose of embra－ cing convex parts of the voussoirs，B B．The whole to be firmly bound together by means of screw－bolts passing through the flanges of A and C．The circular form of joint is here also adopted to provide for any change that may occur in the bearing of the joints．There
and C through which to pass the lower ends of the radial rods．These rods are divided into two parts near the cap alove．Their lower nds pass through the holes，and are secured y means of screws and nuts underneath the irder and bracket，A and C ．Thus the radia ods form tensional braces to hold the upper orm inl When is added to the side of the first，its girder will take the place of the bracket，C The the radial rods of the middle truss will pass through the ends of opposite girders．
No 4 is a portion of a wire cable，with a ow or staple－bolt，with screws and nuts by means of which the cable is drawn to a proper degree of tension．
This bridge is exceedingly beautiful in de ign，as well as being strong and durable in its construction．Bridges on this plan may be made of sufficient strength for railroads to

an extent of 500 feet span．A bridge built strong and heavy to form a protection to the on this plan， 72 feet span，weight 14 j tons， bridge．The four ends weighs each 505 lbs. was tested before Peter Rowe，Esq．，Mayor of The 13 beams weigh each 590 lbs．－9，690 in Schenectady，and some other gentlemen，who all，which，when deducted from 14d tons，the have published a certificate respecting its qua－entire weight of the bridge，will bring the me－ litios and behavior．Forty－two tons of iron were loft on it for 30 hours，without any aign tona being given that this was anything like a teat of its strength．Besides the trusses for sus－ taining loads on this bridge，the girders and abutting end pieces are an addition to the truss of 72 feet clean span，and they are made 4 ？

Messrs．Clute，Brothers，of the Schenectady Foundry and Machine Shop，make this bridge， and communications sent to them will meet with prompt attention，and what they under－ take to do we know will be well done．

Improvement in Presses．
Mr．George B．Whiting，of Harvard，Worces－ ter Co．，Mass．，has invented a very novel and ingenious press，for which he has taken mea－ sures to secure a patent．The press is con－ structed with three circular thick metal plates having spirally inclined ways upon their faces which are placed towards each other with me－ tal balls between them．The middle plate has cog teeth upon its periphery extending nearly around it；into this is geared a worm screw on a shaft，which，by turning，causes the chandise． screw on a shaft，which，by turning，causes the chandise．
said plate to revolve，and the balls－（or roller may be used）to travel down the apiral in clines．The top and bottom plates，not mo ving round，are acted upon by the balls run－ ning in the inclined faces，so as to push down the lower plate to act with great force as a platten in the compression of any material that may be placed between it and the bottom part of the frame．

This press is adapted to press cotton，tobac－ co，paper，books，and bales of any kind of mer－

