
For the Soientifo American.
Many persons by misfortune get paint on their clothes, and from the want of proper knowledge to remove it, their clothes are spuiled for ali decent purposes. This is a great loss especially when fine clothes are spotted or daubed with paint. Many fine and excellent coats have, to our knowledge, been laid aside for common purposes, because of a few apots of paint. Paint can be very easily removed from woolen clothes, although it may be quite hardened. The way to do this is to pour some alcohol on the cloth, saturating the paint, and after it has remained on it for about ten minutes, pour on a little more, and then rub the cloth with the paint spots between the fingers. This cracks up and breaks the paint from the surface, after which a piece of clean aponge dipped in the alcohol, should be rub bed on the cloth, with the grain. Paint can be taken out of silk in the same way, only it is best to steep the part of the silk with the paint on it, in a cup containing the alcohol and it will not do to rub the silk between the fingers, for fear of breaking and creasing it surface. This is true, as it respects lute string or any hard surfaced silk, but figured soft silk, may be gently rubbed. The way to treat the painted silk, is this, after it has been steeped for about 15 minutes, then it should be spread out on a board, and rubbed along the grain with the selvage, by a sponge dip ped in the alcohol. This seldom fails to re move all paint. Some use camphene for re moving paint, but alcohol is more cleanly Black paint on a white surface, or even on any delicately colored surface, always leaves stain, although the paint, itself, strictly speak ing, may be removed. It is much easier t clean a white surface, than one of a light co lor, like French grey, lilac, pink, \&c. Fo cleaning light colored cloths from paint, use only a clean sponge, or if a sponge is not handy, use a piece of clean white flannel.
All the ethere are very effective, in removing paint, also grease spots, but fish oil always leaves a stain, and is exceedingly difficult to remove. There are some who use colored oils for the hair, these always make a bad stain, especially those of a red color. The reason of this is that madder is used to color them and this is a very permanent dye drag. The best substance for removing paint, grease, \&c. from all kinds of clothes, those of the darkest and lightest colors, is that beautiful ether discovered by Prof. Simpson, in Scotland, a few years ago, and by Mr. Guthrie, of America, a few years before, unknown to the Doctor,-we mean chloroform. It is employed in the same manner as the alcohol, only care must be taken to work it more rapidly, as it is more vo latile, and care must also be exercised so as not to inhale it. No one should use it but careful persons of mature years: it is of too high a price to be used in general, and young people, in no case, bhould be allowed to tamper with it.
After what has been aaid about the removal of paint and grease, no person need be much frightened at a paint atain on a fine clot coat, but, at best, let us be candid and say that upon silk it is not possible to remove the paint and leave the silk as it was bef ore being injured. Prevention, in all cases, is better than cure, but misfortunes will take place and seldom come singly, therefore the above will be found useful and of great benefit to many.

George Hudson the Railway King

The only monarch, aays an English journal, who, in spite of his dethronement, seems likely to regain his crown and his influence, is the over-praised and over-abused ex-King George Hudson. Having by the recent rise in Railway shares acquired an additional half-million of tin, and having never for one hour lost any of his brass, he is again coming into favor with the worshippers of Mammon, whose naine is Legion, and will be by no means short of 14 guesta and flatterers at his approachicg "Ball In High Life," at his very tall mansion at AlbertGate, Hy H e Park. Hite careor has been
almost a justification of the worldly wisdom of that respectable parent, whose advice to his
son was, "Get money-honestly if you canbut get money."

For the Soientific Ameriosa
Hydraulics.
(Continued from page 239.)
Fig. 42.

Breast Wheel with Close Sole and Ven tilated Buceets.-This wheel is adapted fo heights not exceeding 18 or 20 feet, and where it is subjected to back water. Every wheel of this kind should have capacity in the buckets to receive a sufficient quantity of water to force the wheel at full speed through a depth five or six feet of backwater.
A wheel of this kind was erected, of one hundred horse power, for a flax mill at Whitehaven, England, about four years ago. It was 20 feet in diameter, 22 feet wide inside of he buckets, and 22 inches deep on the shroud. thad a close rivetted sole with buckets ventilated from one to the other ss shown in fig 42. The water is discharged upon the whee by a circular shuttle lowered by a governor, as circumatances may require. The tail end of the buckets, A A A, are turned up at a diatance f two inches from the back of the sole plate, nd terminated within two inches from the bend of the upper bucket. The water in passing through the opening between the buckets drives the air before it in the direction of the arrows, into the buckets above, and so on in succession till each bucket is filled as it passes the aperture of the cistern from which the water flows upon the wheel. The buckets re thus cleared of air, the water is discharged with facility, and the air is again admitted a he bottom of the fall
The wheels with ventilated buckets have reved the strongest commendations from those ho have used them. The ventilated wheels so essential for very high falls. It is important to carry the water down as near to the verticalcentre as possible, so as, to get the best effect from it, and yet begin to part with it as soon as that line is passed.
Poncelet Wheele.-The accompanying ig. 43 is a wheel that was built at Loubregat in Italy, by M. De Bergue.

Fig. 43.

The diameter was sixteen feet eight inches, and the width was thirty feet, which, with a all of six feet six inches, passed one hundred and twenty thousand cubic feet of water per minute, when the periphery travelled at a velocity of eleven to twenty feet per second. An ordinary breast-wheel would require to be ninety feet wide to use advantageously that uantity of water. It is found that the velo city of the periphery should be about fifty-fiv per cent. of that of the water flowing through
the sluice, and upon these data the power of the wheel would be about one hundred and eighty horse power. The buckets were of curved form, and made of wrought-iron, oneeighth of an inch thick; and it would be oberved, that there was a larger number of buckets than uaual, and that the water came
of such a form and dimensions, as to allow
the buckets to fill easily, at the rapid speed a which the periphery passed before the sluice. This great primary velocity was very important, as it caused a considerable asaving in the gearing of the mill. The main shaft was formed by a hollow cylinder of cast-iron, four feet six inches diameter, in short lengths bolted together. The strain was brought entirely upon the main shaft, and the weight of the wheel was thus reduced to aboat thirty tons which was very little for so powerful a machine The sluice was formed of cast-iron plates, with planed joints, bolted through the flanches, to form one large shuttle, of the breadth of the tie-rods, between the stone-apron and the back tie-rods, between the stone-apron and the back
of the sluice, which could thus be raised with great facility by racks and pinions, and be regulated by the.ordinarygovernor, the weight of the sluice being in a great degree supported by the water flowing beneath it on to the wheel. It moved very accurately between th side-walls of the pen-trough, and cup-leather at each side prevented any waste of water This kind of wheel was less affected by back water than any other form, and the water act d upon it with its full power of velocity, with out any impediment from the air in entering therewas no sole-plate; the buckets wer therefore filled and emptied with great facili y. For low falls under 8 feet, this wheel llowed to be very excellent.

Scientific Memoranda.

Velocity of Sound Over Wire.-Some xperiments in regard to the velocity with which sound is communicated by means of on wire, have just been reported to the Pa . is Academy of Sciences. The experiments were made upon the wires of the electric tele graph established along the Versailles railroad on the right bank of the Seine. The result was that sound is propagated over wire at the sate of 11,434 feet the second.
Curious Discovery of an Old Mine.Near Wislock, in Baden, a large mine has latey been discovered, which it is supposed has not been worked for a thousand years, an then by the Romans, who sought only for sil ver and lead, and left everything else. The mine is said to conta'n some fifty thousand ons of oxide of zinc, used in the manufacture of zinc paint.
Giant Cofton Stale.-The Montgomery Alabama) Journal says: "We were shown a few days since by Mr. Coxe, one of the delegates from this quarter to the World's Fair in London, a section of an immense cotton stalk, which he will take with him as a specimen of the plantas it grows in the rich prairie bottoms of Alabama The plant was twenty feet in height and bore one thoussand bolls. It was grown on the plantation of Mr. P. A. Wray of this county. Mr. Coke and brother will leave at an early period for Europe."
Poisonous Vessels.-Vessels of copper of ten give rise to poisoning. Though the meta undergoes but littlechange in a dry atmosphere it is rusted if moisture be present, and its sur ace becomes covered with a green substance -carbonate of the protoxide of copper, a po sonous compound. It has sometimes happen ed, that a mother has, for want of knowledge poisoned her family. Sour krout, when per mitted to stand some time in a copper vesse has produced death in a few hours. Cooks sometimes permit pickles to remain in coppe vessels, that they may acquire a rich green color, which they do by absorbing poison.
Steam Communication.-The firm of Campbell \& Arnott, of Liverpool, are building ine of screw steamers, to run between that city and Chagres. They have already estab lished a house at Panama, and will forward goods, \&c., to the Pacific by the America teamers running to San Francisco
Curious Fact in Regard to Cotton.
Many years ago, the senior editor of thi paper was informed by his venerable and here ditary friend, Samuel Maverick, Esq., of Pen dleton, that when a boy, as clerk in the house of his uncle, Mr. Wm. Turpin, of Charleston, he assisted in packing the first bag of cotton ever sent to Liverpool from the Tnited Sta

Mr. Maverick is still living, and we now ex port some two millions of bags of cotton every year. The cotton packed by Mr. Maverick was put up in the seed. This was long before Whitney's invention of the cotton gin. The consignee of this lone bag of cotton informed the house of Wadeworth \& Turpin that he could not sellit, that it was valueless, and ad. vised them to send no more. How little this raithful factor saw into futurity 1-Southern Patriot.
The Thames Tunnel Company report that the receipts from this stupendous work are gradually increasing. The Tunnel has been converted into picture galleries. Each panel contains a view like that of the Southampton Water, the Isle of Wight, etc., etc.

LITERARY NOTICES.
General Theory of brider Conbtruction.This is a new work, by Herman Haupt, A. M., pub-
lighed by D. Appleton $\begin{aligned} & \text { \& }\end{aligned}$ Co., Broadway. It is devoted to an explanation of the general principles of the
architecture of bridgese. It is the fruit of a series of
experiments on models, and of the examination of experiments on modela, and or the examination of
various strucurea in difierent parts of the country,
especially in the State of Pennsylvania. In the opiion of the author, many serious defects exist in seeral important structures, that have escaped theobme the meritof originality, all the propositions hav ug been proved byentirely new demonstrations. The ennsylvania Railroad. He has divided his work inthat in new and of the on greatest consequence to engi-
eers. The errors of other authors are pointed out neers. The errors of other authors are pointed our,
and the theoretical and pratctical are judiciously
bended to anether. It is wellililustrated and well pint blended together. It is welliillustrated and well print.
ed. Both author and publisher deserve praisef or the produotion or such a book. It is a valuable acquisi-
tion to the scientific works of our country, as it treate Iconographic Encyclopedia.-Part 18 of this ubefal and beautiful work is now publirged and ready
or sale by Mr. Rudolph Garrigue, No. 2 Barclay at V. Y . It contains plates 433 to 512 : the illustrations are those of architecture. The eng ravings are very
fne; they represent the difierent styles and the pro-
sise
 Parthenon. The Arehitecture of Egypt, India, and
Greec, , is beatifully illuartrated. There are also
some fine views of nautical machinery.
The American Keystonr is thetitle of nowjour-
ail just commenced by Messrs. Callicot $\&$ N Webster , 42 Nassau st., this city. Mesirs. Callicot it devoted to theinterestic
and of freemasonry, but aside from this it oontaing as
choice collection of literature and news. Terms, \$2. Nos. 34 and 36, Boston Editionof Shakspeare's Dra-
 bers complete this el
pott, $\mathrm{N} . \mathrm{Y}$., agents.

NEGHAMIGS

INVENTORS

 MANUFACTURERS.The Best Mechanical Paper
in the world SIXTH VOLUME OF THE SCIENTIFIC AMERICAN The Publishers of the SCIENTIFIC AMERICAN
respectfully give notice that the Sixt Vorvar raspectruly give notice that the sixit Volvis
of this valuable journal, commenoed on the 21st
of Beptember last. The oharaoter of the 8crentific Ambrican is too well known throughout the country to require a detailed acoount of the va-
rious subjects digcuseai through ite columne rious subjects discussed through its olumna
It enjoys a more extensive and influential circulaIo enjoys a more extensive and infuential oircula-
ion than any other journal of its clagin America.
It is published weekly, as heretof ore, in Ouart ove
and VAL ENGRAVINGS, deg HUNDRED ORIGI, by letters of reon concerning the progress of SCIENTIFIC and
MECHANICAL IMPROVEMENTS CHEMISTRY, various branoles, ARGCHITECTURE, MABONRY,
BOTANY,-in short, it embraces the entire range ot it Atr and 8 ciencos.

 OF INVENTIONS."
TERMs-\$2 a-year; $\$ 1$ for six mnnthe.
All Letters must be Post Paid and directe
Publishers of the Soientifo Amerioan,
128 Fulton
inducements for clubbing.
 Oing oppy for the same length of tima ; or vo
 subscriptions ; or Post Offioe Stampe taken at their
full value
PREMIUM
Any person sending us three aubeoribera will on en-
tittied to a copy of the "History of Propelleri and
Steam Navigation," re-publighed in ng first appeared in resprien of artioleg pubm-hav.

