Improved Pitch Square

It is only by long experience, and by having the at tention directed to the subject, that any person, either performing work or having the direction ofit, is able to appreciate the large proportion of time consumed in planning, measuring, and laying out. Instruments, thercfore, which indicate the exact position for a cut or a hole, are valuable, not only from securing a greater accuracy in the work, butalso from the saving of time which results from their use.
The accompanying engravings represent a simple implement for carpenters' and joiners' use, intended to tacilitate the cutting of rafters, the laying out of stairs and many other operations. It consists merely in the combination of a carpenters' square with a graduated straight edge.
Fig. 1 is a flat view of the implement and Fig. 2 a view edgewise. Λ is a carpenters' square made of metal in the ordinary form with the outer edges graduated in inches and sixteenths, and the inner edges in inches and twelfths. The straight edge or stock, B, is in two parts, one upon each side of the square as shown in Fig. 2. These two parts of the stock are drawn together -grasping the squareby means of the bolts, C C, which are provided with nuts, D, having milled heads; dowel pins, ee, keep the parts in position. The bolts, C, pass through long slots, $c \quad c$, in the square and $f f$, in the stock, allowing the relative position of those two piece to be varied.

The outer edge of the stock is graduated in inches as shown in Fig. 2, the inches from to 6 inclusive being subdivided into twelfths, and at each side of these points into sixteenths.
It would be impossible to give directions for the use of this implement in the great number of cases in which it may be employed, but a few of the more important will be sufficient to suggest the others as occasions arise. If it is desired to obtain the length of a rafter for a roof of which the span is 32 feet and the perpendicular hight 16 feet; let one-fourth of an inch on the scale represent a foot in the roof; set the short arm of the square with the fourth inch-equal to 16 quarters of an inch for the 16 feet perpendicular hight-even with the side of the stock; and bring the fourth division on the longer arm of the squareequal to 16 feet, one-half of the span-even with zero on the stock; then will the space on the stock between the two arms of the square represent the length of the rafter, and this space may be read off on the scale of the stock where this scale is cut by the short arm of the square.

When the implement is thus adjusted to determine the length of a rafter, the shorter arm, a, will give the bevel for the upper end, and the longer arm, b, of the foot, as shown in Fig. 5.

Fig. 3 illustrates the mode of adjusting the implement to be used as a miter, and Fig. 4 shows the manner in which it may be used for laying out stairs ; one limb giving the angle for the treads and the other for the rises.

The patent for this invention was granted, through the Scientific American Patent Agency, May 6, 1862, and for the purchase of either the whole patent or territorial rights, or for any further information in relation to the matter, inquiries may be addressed to the inventor, John Iseman, at Rosston, Pa. [See advertisement in our next number.]

Large numbers of steam engines upon the plan of G. H. Corliss, of Providence, R. I., are now made in Silesia, Prussia, and two of them are shown in the London Exhibition.

The Power of Sea Waves.

The following interesting extracts are from an article in the last number of the North British Review on the "Geological Changes in Scotland in Historic Times' ':-
Of all the agents of change that have modified the surface of the land, none arrest the attention more than the waves of the sea. One cannot witness the effects of a storm on an exposed coast without being impressed with the enormous amount of wear and tear which is there visible.

No written records of changes effected by the sea in Scotland go further back than four hundred years. It would be interesting if we could trace the gradual retreat of the coast line for the past two thousand years. The force with which the waves of the Ger-
incredible. In 1802 a tabular mass of rock 8 feet 2 inches, by 7 feet, and 5 feet in thickness, was removed to a distance of 90 feet by the sea in one of the islands. During the progress of erecting a lighthouse on Skerryvore rock-which lies on the west coast of Scotland, exposed to the full fury of the At. lantic, without a ridge of land between it and Ameri-ca-the pressure of the waves was measured in 1843 and 1844 and 1845 by Mr. A. Stevenson, the eugineer. During a heavy gale in March, 1845, the pressure was $6,083 \mathrm{Hbs}$. on the square foot. In wintor the average pressure is $2,086 \mathrm{IDs}$. on the square foot, in summer it is only 611 lbs . Thus the greatest pressure is nearly three tuns on the foot-a force which is terrific in its destructive effects.

