constitution. It is at least curious that several variable stars have been detectedin the region of the great nebula, in Orion; that in 1860 a star suddenly shome out in the middle of the well-known nebula Mcssier 80 (about half-way between Antares and Detu in Scorpio) which vanished in a few days, and that, as first remarked by Sir John Herschel, allthe temporary stars, without exception, hwing bern situate in or near to the borders of the Milky Way-- the star cluster or ring to which our system of sun and planets belongs. In the latter class are included the memomble star of B. C. 184, which led hipparchns to form his catalogue of stars, and those which blazed forth in 15T? and 1 tof, in the times of Tycho Brahe and Kepler.
In rencluding, I will venture to express the hope that some of the many amateur astronomers in this foontry who have provided themselves with telesopes of firstrate excellence, will keepastrict watch nawn the remarkable par of sariables which I have hisefly deseribed in this rommmuication. Continuity of ohemeaton is often mosi important, and (ean only he secured and that not always in the uncertainty of weather by astrong force of observers in differ' 121 loralities.

The wrat amies ate now face to face and the davin sf amm; may any momme bedo upan the ear. We matily wish that the nation miont be amand the further efficion of boon that one ering fallow citizens would lay down their anms and relan to their allegiance, and experience at ence how readily our government and the loyal people weald ofier protection wen to those who have bean deceived hy bad leaders to take up arms against ronslitutional anthority. But such a result camot bo expected, and more battles must be fought and more blood be shed; therefore the sooner these grat armies are pitted against each other in deadly strife the sooner may we leok for a solation of the grat uational trouble. As we think of our country thus afficted, which but a few months age was the ruost presperous on theglobe, we are led to wonder more and more why a portion of our people conld have become se thoroughly maddened as they now are.
At last accounts Gen. Bicclellan was within a few miles of Richmond, pushing forward to the attack with a commetndable zeal and prudence, and it seems to be understood that the entmy will dispute the right of occupation with great desperation.
Gen. Halleck was within three miles of Corinth at last advices, cantimely approaching the foe. This General, like (ion. McClellan, is prudent and able, and knows that it will not de to rush pell incll upon the for, but mant appreach cautiously and carefally, to guard against surprise. At the very hour that we now write half a million of men may be fighting. We contemplate such a struggle with horror, confident, however, that we shall triumph.
a faldiant naval madiot?
Whorever the armies of the Inited States have advanced ithas usually found warm fiends in the colored population, and, could all the events of the war be faithfully chronicled, it would appear that those people have furnished eur officers with much valuahe information, while it camnot be denied that they have often been used as spies against us.
Commodore Dupont reporta a most gallant expleit on the part of cight negrees in the rumning out of Charleston han hor an armed vessel- the l'lenter -and : mrendering her to the Federal bleckading squadron. Commodore Dupont, in his report to the Secretary of the Navy, gives the following account of the matter: "At four in the morning, in the absence of che captain, who was on shore, she left her wharf, close to the gommenent office and headindriers, with the P'uhretio and Confederate flags flying - passed the sucreasive forts, saluted as usual by blowing ihe stem whistle. After getting incond the range of the last youn she hauled down the rebel flag and hoisted a white one. The Oncortl was the inside ship of the blockading squadron in the main chamel, and was meparing to firc, when her commander made out the white flag. The armature of the steamer is a 82 pommer or piret, and a fine 24 -pounder howitzer. She hes, beaids on her deck four othrs guns one a

7 -inch rifled-which were to be taken on the morning of the escape to the new fort on the middle ground. One of the four belonged to Fort sumter, and had been struck, in the rebel attack on the fort, on the muzzle. Robertsmall, the intelligent slave and pilet of the boat, whe performed this lold feat so skillfully, informed me of this fact, presuming it would be a matter of interest to us to have possession of this gun. This man, Robert Small, is superior to any who have come into our lines, intelligent as many of them have been. IIis information has been most interest.ing, and pertions of it of the utmost importance.'
aunboat operations on the fames reter.
The James liiver is now clear of olstruction to within seven or cight miles of Richmond. At that point there is a heary battery mounted on a high blaff, and the river is temporarilyclosed to navigation by sunken vessels, piles, chains, \&c. in a recent attempt of our iron-plated gumbats the Monitor and Culena---to pass this point they were temporarily prevented by these olstacles.
It appears that an atemipt was made by the gunboats to remorn thee obstructions, under a fatal tire from the fort, which was able to porir its shot with accuracy down upon them, while they could not reply with much effect. This font can only he reached with mortars: but if the obstructions conld the dwaged out of the channel the gunboats might easily pars the fort and have 保: ity of lidmond at their merey. The ciellomand Aominer -whith alone cond be effed tive
 ciently to be of serviee in melacing the battery. So land force aederapanion the sumatyon, and henot, as the phace is trially unfavorable for a maval attack, it rould not be lakcia. The vulnerable part of irmclad hoats is their deck plating. which, heime only one inch thick, is penotribhe by the largest shot by a plunging fire from an elevated position. The wooden vessels were wholly incapable of assisting in the reduction of the fort. Tnless the fort has been aptured by this time it will probally impede the passage of our lonty quite serionsly, except it be Hanked. The first shot of the enemy's gun rolled off the sides of the Galena, making only dents in her mail, but gradually, after five hous fighting. it was fombt that the steel pointed thats neal hy him were piercing her. 'Thinty shots struck her and lodsel, while two went entirely through her, tumbling out on the other side. The homitor, however, maintained her superior strength and invulne rability. The balls flanced hamlese from her tower of strength and fell into the ghesl waters of the bive. The small gunboat Netagutuch, fitted up by E. Λ. Streeos, of Hoboken, to illustrate in some degree the laree battery which he is tryiner to complete, accompanied the expedition, and carried a single ritled gun--a 100 pounder Parrott. Shortly after being hrousht into action this gun burst, and the vessel was noiiged to withdraw. It is expected that the attack will be speedily renewed by a more formidable force, including mortar boats, which can operate with more success upen such elevated points than can gunboats.
dhe prasident on gen. hunter's hrochamation.
Gen. Humter, commander of the department embracing South Carolina, Georgia and Florida, issued a proclamation on the 9th inst., declaring the slaves of those States forever free. The President has taken the matter in hand, and has declared Gen. Hunter's act null and void, and, in order that there may be no future interference with his authority on this pint, the President announces the following t be his position: \therefore I further make known, that whether it be competent for me, as Commander-in Chief of the army and navy, to declare the slaves of any State or States free ; and whether at any time, or in any case, it shall have become a necessity indispensable to the maintenance of the government to exercise such supposed power, are questions which, under my resporasibility, I reserve to myself, and wisich I cannot feel justifitd in leaving to the decision of commanders in the field. 'These are totally different questions fromi those of police regulations in armies and camps.'

We are glad to know that the Jresidend has finally entered his caveat as an adronition to all military commanders to attend strictly to their dutios. L. 1 them attack the enemy boldly and vigorously, and leave all questions of civil pelicy to he settled by the "vermment. Some few of our generals have made foot: if themselve: by their silly and ridicutoms pro-
clamations, even bcfore they were sure of holding the ground on which they stood.

The Fredericesburgh correspondent of the Philadelphia Inquirer says:-. The pontoon kidge across the limpahannock, at this piace, is one of the greatest inventions of the agre. The pieces are numbered, and together with the gutta-perchia hoats, are carried in wagons from stream te stream. The corps attached to the pontoon have become so perfect in their laying of the bilue that a stream, the width of the Rappahannock, can le crossed by the bridge in a few minutes. We have just witnessed some practice with another bridge thim that already laid down, and the performance is really wonderful. The government is now repairing the raibrod bridge over the liaphennock, and in a few days the cars will be enchted to run from Ayuia Creek into the wiy of Fredurcksburg.

The submarine telegraph cable was successfally laid on the both inst., across the Cheramate bay. from ('hery stone to Bath hiver in Vibiais, and the Wat Department is now in lelesmphic commanicetion with eotreas Momsoe and (ien. Metlenha's headquarters.
The cable, twenty fire wifes in hogth, is heavily armored with sixteen shout iron wisw, armonged lompitulinally, like the staven of : barrel amand the insulatinef coat and conductor, abl puterting them from all strain by any fun, fher of whet would be reguited to brak the eontin!s wines, the aggreasta streagth of which cumali; that of a ship's chain cable.
The longitudinal wire; are heopasi hy as whl bat. ici wiye, womd shitaly romme thmi which binds them together so thei they fo: hita strom; hat llexible
 and the insulating ceat. This is deemed a groat improvement over the buglish systom of spiral wite armer which was used in the λ thantic calh. aml tended so stronsly and incorrigibly to twist and limk.
At the time of laying the first tompomary cable, there was no beary able in this countiy, or machinery for its expeditions wanfachere. The experiment was made with sach cable ti: coull be extemporized at the moment, and which was constructed like the English cable, 370 miles in length, laid in the Black Sea, between Varna and Palaklava, during the Crimean war, and which worked soadminaty for several months.
The tempory cable worked ancesfully, amomost opportmely to relieve the pholir mind on the memorable Surday of the battle between the Muntor and the Merrimer. Wh in a few days was dmegred away by anchors, or otherwie brobell-atn accident not ikely to happen to a cable of such iminense strength as the new ene.
The present cable was manufactucd in New Tork, under the ordes; of Col. Anson Stagu, Militay Buperintendent of lanited states Telegraph:, and was laid in four hours, under the supervision of Mr. Wirm. H. Heiss, who also superinterded its manufacture. A brake of novel constiuction was used to gevern the paying out of the cable, and worked so admirably that it is theught it will overcome one of the greatest difficultics expericncel in laying the Atlantic cable. mbellalaneots.
It is stated that the Scientific Boarl charged with the duty of examining into and rejorting upon the merits and prospective adrantages of the Stevens battery for harbor defince hive matle a wory strong repert against it.
Forty thousand pounds of powder have recently been removed from the hold of the steamship her. muda, a prize ntenme: now lying in the port of Philadelphia.
The Vicksburgh \%....... of the 9 th inst. anmounce: that cimnonading laal been heard foren our vessel on the previons day at Tunica, which is abont fifty miles above Baton houge. We shall probably soon hear of the arrival of our gumbots at Memphis.
Tinn lireat bistern wrived at this port on Saturday May 17 th, after a prosperous voyage. She is agrain in tronble : the owners having refused to make any recornition of the servies of Mr. Towle, in devisiug the stecring apparatus by which she was saved in Gep. tember last, that gentlemon has commencei legal proceedin!s argamst her.

The New American Cyclopedia.

'l'his great work appreaches completion. We have ruceived from the publishers, D. Appleton \& Ce., Nes. 443 and 445 Broadway, the fourteenth volume, carrying the alphabet from REE to SPI. The following extracts will give a geed idea of the manner in which the eeveral subjects are treated:
regnalla:
Henri Victor Resnault, a French physician and chemist, born in Aix la Chapelle, July 21, 1810. He holds the pesition of engineer-in-chief of mines, and director of the imperial manufactory of porcelain at Sievres, and is alse professer of physics at the college of France, and of chemistry in the pelytechic scheol. His attention has been devoted chiefly to heat in its combinations with matter, and he was the first to demonstrate that the latent heat of steam diminishes as the sensible heat increases, but in a slower proportion. He has also verificd the law of Mariotte and Boyle on the compressibility of the gases. Accounts of his investigations on these subjects fill the twentyfirst volume of the Mémoires of the French academy of scionces. Analegous researches on the specific heat of solids and liquids, on hygrometry, on the respira tion of animals and kindred topics, have from time to time been published in the Annales de chemie et de plysiepu. He is alse the auther of an elementary treatise in chemistry, translated into several European lan-

sadjujeres.

The name of a Jewish scet. According to a Jewish trubian the name is dexived from Tradok, the repu(1.) foinder of the sect, who flourished in the early plurt of the third century B. C.; but Epiphanius derives it from the Hebrew word tzaddik (just), and says that the followers of the sect assumed this name, as they considered themselves preëminently as the just. Both these derivations are uncertain and doubtful. They appear in history for the first time under the Miaccabrean Jonathan, about 144 B. C. They acknewlalged only the written law, and rejected the obligatory cbaracter of all traditions; they denied the existence of spirits and angels in general, and held that the soul dies with the body, and has to expect neither reward nor purishment after death ; they also denied a special providence, and made all human actions solely dependent on the free will of men. The sect wa: never numerous, erpecially in comparisen with the I'harisees, but highly influential, as it mestly recruited itself from the educated and wealthy classes. Toward the clost: of the distinct national existence cif the Jews the Sadducees were formally excluded from Iudaism, and gradually disappeared; but some of their principles were revived by the sect of Caraites. A valuable work on the Sadducees has been written by Gressmann, De Plilosophia Nadduccorum (Leipsic, 1836).

sants.

Hefore the time of Lavoisier, the name of salt was applied by chemists to almest any solid, crystallizah!e, transparent and soluble bedy; but he first restricter its meaning by defining a salt as " a body formed by the combination of an acid with a base, in which the properties of both are more or less neutralizocl." This was a great advance, but when the acids containing hydregen were afterward discevered, it was perceived that this definition excluded their salts, which consisted only of a metallic element, combined with chlorine, bromine, iedine, sulphur, \&c., and to which common ealt, the very type of the class, belonged. T• these compounds Berzelius preposed to give the title of haloid salts. Λ further extension of meaning has since been given, by applying it t all combinatiens $\bullet f$ tw binary compunds having a common element. Thus the combination of chleride of $g \bullet l d$ with an ther chloride is called a chlorosalt, and a combination of twe sulphurets a sulphesalt. The salts of the exygenated bases may unite t form deuble salts, of which alum (deuble sulphate u! alumina and potash) is an example. Combinations w: oxygen salts with cxides or hal ${ }^{\text {id }}$ salts also eccur, as well as of exides with hal \bullet salts, preducing exychlorides, \&c. Salts may be neutral, acid, or alkaline, according i• the preportion between the acid and the base. The salts formed by any given acid with the protoxides, sesquiexides, \&c., of the metals, generally crystallize in the same or closely allied forms, or sometimes an acid may have two or more forms in which its salts eccur. As an acid eiten forms more
than one combination with a base, in that case of course different forms are preduced. This property, knセwn as isomorphism, extends to the haleid and -ther salts. The list of salts has of late years been multiplied manifold by the discovery of immense numbers of organic salts, in which either the base or the acid, and frequently both, are replaced by compeunds, often very complicated, of carben, hydrogen, nitregen, Sc. Haleid erganic salts alse exist, chlerine, bremine, \&c., being replaced by such compounds as cyanegen, and the analogy to inorganic salts is in every respect perfect.
sardine.
A small and well-known fish of the herring family, and genus alosa (Cuv) Itis regarded by Valensiennes and mest ichthyolegists as identical with the fish called pilchard on the coasts of Great Britain, though Cuvier made it distinct, giving it the specific name of sardina. On the former assumption no description is here necessary. Its flesh is very delicate. The fishery empleys a great number of men and women on the coasts of Brittany, and to a less extent of Portugal. The vessels are generally of eight or ten tuns each, with a crew of six to ten; they ge two or three leagues from land, and when they see fish spread their gill nets, scattering their bait, which consists of the eggs and flesh of fish, especially of the cod and mackerel, and sometimes salted fish and crustaceans. Some are salted on board, and the others are carried on shore, and either consumed fresh, or salted, or preserved in $\bullet l i v e ~ o i l ~ a n d ~ m e l t e d ~ b u t t e r ~ f o r ~ e x p e r t a-~$ tion; the tin cases in which they are packed are familiar to all. The larger fish are called celans in France, and pilchards in England; their sheals are preyed upen by codfish, and especially by porpoises. Fish of many other genera of the herring family are called sardines. In the East Indies species of clupeonia, spratella, kowala and Dussumera (the last named belonging to the erythrinide) are placed on the table as sardines, and have a delicate flaver; in the West Indies harengula clupeola (Val.) is called the Spanish sardine, and pellona Orfrigmyana (Val.) in South America; many \bullet ther species on our coast, if preserved in \bullet live •il, w•uld doultless be as delicious as the Eurepean sardine.

SEED.
The regular perfect repreductive agent in phenegamons plants by which species and varieties are perpet uated. The center of fertile flowers contains a hollow organ called the evary, and this covers a number of small excrescent grewths compesed of a delicate tissue, which are the \bullet vules. Λ fter impregnation by means of the pollen these ovules rapidly increase in size and underge many medification which end in the preduction of the seeds. Within each sced is the embry or y ung plant, consisting of a radicle, plumule and cotyled•ns; and while develeping itself, the membranes which surround it frequently store themselves with albumen or starchy matters to be used by the embrye while in the precess of germination. In some species the cotyledons contain the alifumen, and for the same purposes. The ripened seed is protected by several external envelopes called the testa, perisperm, or spermoderm, consisting of the hardencd membranes which inclosed the evule. A small eye -r scar (hilum) upen the side of the seed indicates where the umbilical cord (funiculus) prececding from the partition of the ovary (placenta) was attached to the seed. The funiculus in the nutmeg enlarges itself into the aril and envelopes the seed, forming the mace of commerce; in the spindle tree it enlarges inte an investing brilliant-colored mantle or cloak. Seeds are sm•oth © reugh, sculptured or embessed, marked by veins, depressions and elevations; and their testa present much beauty in these particulars as well as in their colors and tints. They may be enveloped in fleecy substances, like the cotton, or bristly and hairy, -r furnished with alce or projections like wings, as in the bignoniacea: Many families of plants have small fruits or sorts of nuts se similar te seeds as to be ordinarily called by that name, butcareful examination sh॰ws the presence of pericarpal ceverings. In the comiferc and cycadacece, however, neither the seed nor the ovule is ever invested with any coverings, and on these extraordinary exceptions Robert Brown founded excellent natural characters in these twe - rders.

The Pasha of aimol wi!l hanous the visitors to the Londen Exhilition.

The Results of the Carbureting Process.
We find the foilowing in the London Engineer :At the last meeting of the City Commission of Sewers, Deputy Lott moved that it be referred to the engineer and the medical efficer to examine and report whether the light from the gas lamps in the public streets was increased or diminished by the carbureting precess recently applied to them, and whether the light threwn upen the feotways was n \bullet, as he submitted it was, olscured by the shadow of the boxes containing the material used in the precess. In the course of a discussion on this subject, Mr. Hayweed, engincer to the commission, read a letter addressed to him by Mr. Massey, secretary to the Great Central Gas Company, complaining that the Carbureting Company, in applying their precess to public lamps within the city, were picking out a lamp here and there for the purpese, the inconvenience of the company. Mr. Massey alse stated that a few days ago, as the Carbureting Company's men were fitting one of their naphtha boxes to a lamp in (eueenhithe it exploded. This, he added, was the third accident of the kind that had eccurred within the last three weeks. The directors of the Great Central had directed him to call the most serious attention of the court to an instance of explosion in a lracket lamp in Harrew-alley. Had, he said, one of the numereus lamps fixed in the rear of the same premises ignitcd, instead of the lamp in question, the great probibility was that, occurring as it did late in the night, the whole block of homses and buildings used as cattle sheds would have been burnt down. The ewner of the property had made a communication as to the risk she was incurring, and expressing great fear and anxiety for the future.
Dr. Λ braham said prebably the accidents referred to, which were exceptional, were due to mismanagement, and therefore preventible. At all events they were not of a nature to induce the Commissioners to abanden the carbureting precess, by which a great saving of money was being effected in the public lighting, and which, he believed, would be eventually ad॰pted \bullet ver the entire metr•p॰lis.
Mr. H. Lewman Tayler held that the saving of money was at the expense of light, for he had observed on a recent occasion, late at night, a sort of twilight gloum in places where the precess was in use. Besides it was elvious that the boxes rentaining the naphtha, attached to the public lamps, threw shade ws on the ground.
Dr. Abraham said it was well known, long before the carbureting precess was adopted, thatat advanced hours of the night there was always a paucity of gas, consequent upon the companies relaxing their pressure.
The subject, on the motion of Deputy Harrison was eventually referred to the General Purpeses Com mittee for deliberate inquiry and repert.

Webster's Great Dictionary

We learn with much pleasure from the publishers, Messrs. G. \& C. Mcrriam, Springfield, Mass., that the new pictorial edition of "Welster's Unabridged Dictionary" is having a very extended sale. Fvery scheel, every oifice, nay every dwelling, should he previded with it. It is the standard not enly for spelling and definition, but alse for correct prenunciation. The amount of general infomation which is alse condensed within its pares is truly astonishing. In the course of a very externsive professional practice we have frequent necorsity to seek out and apply the best technical terms and descriptions. Webster is our constant receurse, and we never consult him in vain. It is surprising to olserve how replete the work is. As an educational medium this work enjeys a very high reputation. Fer the schoels of New York State n- less than ten thousand copies have been purchased, while in Massachusette, Michigan, New Jersey and Wiscensin an equal number has been obtained, or one copy for almost every scheol. It is said that more than ten times as many copies of Weloster are sold as of any ether similar publication.

Plaster of Paris in Safes.-It will he seen that - ur Trey correspondent attributes the general failure of safes at the Trey fire, to the substitution of other materials for plaster of Paris. We shall have something further te say en this impertant sabject.

Tus tax en rogs in the State of Massachmsetts yielded in 1861, 817,97265 .

Improved Propeller.

The accompanying engravings illustrate a novel propeller, invented by Charles O'Hara, of London, England, designed particularly for vessels of very light draft. The propeller detached from its connections is shown in perspective in Fig. 4. It is of semicylindrical form, and operates by oscillating upon a vertical axis, being completely submerged in a recess formed to receive it at the stern of the boat, H , as shown in Fig. 3. The engraving represents a semicircular shield, G, at the top of the propeller brought forward so as to complete the circle of the upper surface ; this form is preferred by the inventor, but is not essential. The surface which strikes the water is fluted with vertical concave grooves as shown. The propeller is connected with a steam engine and, being vibrated through a fewdegrees, presses against the water first upon one side and then upon the other of its axis, and thus drives the vessel along.
In order to draw the vessel backward the propeller must have its plane side turned forward, and in order to permit this it is necessary to connect it with the engine by some peculiar devices. These are represented in Figs. 1 and 2.
The cogwheel, A, is secured rigidly to the upper end of the propeller shaft, and the arm, B, is fitted loosely upon the shaft over the wheel, A. A slide, C, rests upon the arm, B, and has a tooth attached to it which passes through a slot in the arm, and may enter any one of the spaces between the teeth of the wheel, A. It will be seen that by carrying the slide from the center, the tooth is drawn out frombetween the cogs of the wheel, A, and thus the wheel is disengaged from its connection with arm, B. I's position may now be reversed, and then by drawing back the tooth between the cogs the connections between the wheel and the arm, B, is renewed, ar: the propeller is again subjected to the power of the engine. To facilitate the breaking and reforming of this connection, a lever, D , is secured over the slide with its fulcrum at e, and a post upon the opposite side of the wheel having a notch to hold the lever in place. The lever operates on the slide by means of two studs, f and g, attached to the slide and rising one upon each side of the lever. When it is desired to turn the vessel around, the propeller may be turned but one-fourth of a revolution on its axis and secured in that position, when it will operate to move the stern of the vesseldirectly to one side. The propeller may be hung upon a horizontal axis if desired when one-half only is to be submerged.
The following advantages are claimed for this propeller by the inveator :-
Ist. Simplicity of its structure and cheapness in manufacture.

2d. Simplicity and cheapness of the kind of engine used in connection with it.
3d. Very direct action.
4th. No loss of power by lifting water or displacing it, as is the case with the paddle wheel or screw.
5 th. Great reduction in the consumption of fuel.
6th. For floating batteries the propeller is totally submerged, and all the machinery may be placed under the water line.

11th. It may be used with sails, so that during direct winds fucl may be economized.
The American patent for this invention was granted through the Scientific American Patent Agency, April 22, 1862, and further information in relation to it may be obtained by addressing the assignee, W . O'Hara, at Toronto, C. W.

Valuable Substitute for Metal.
The London Artuzan says:-Adamas, as a substitute for metal in the manufacture of gas burners, bas frequently been mentioned and it has also been stated that the same substance was equally applicable to various other purpeses for which metalhas been employed. The use of the adamas burners has recently become very general, and Mr. Leoni, the inventor and manufacturer of them, bas now succeeded in introducing adamas taps and adamas machine bearings, the working of which has given the greatest satisfaction to those who have employed them. The mode of manufacture consists in reducing the silicate of magnesia to an impalpable powder, and then molding it into the desired form, and annealing it, the result being, that with the greatest facility the utmost precision may be obtained. When employed for taps the advantage is that an article is produced upon which neither heat nor acids have any effect, at a merely nominal price, and it is anticipated that at no distant period adamas steam cocks will come into general use, to which purpose the material is undoubtedly well adapted, since, on a trial of a couple
of ordinary adamas beer taps(the price of which will

0'HARA'S LIGHT-DRAFT PROPELLER.

7 th. No surge is caused by it in canals to injure or be but 1 s . or 1 s .3 d . to the retail customer) the one wash their banks, and no rapid vibrations tending to injure the boat or its machinery.
8th. On the shortest notice the propeller may be placed in a position to so oscillate that the vessel can be instantly turned out of her course to the right began to leak at a pressure of 65 Dbs . to the inch, and the other stood upwards of 80 lbs . without being affected But the purpose to which the material may be considered as more especially applicable, is for the manufacture of machine bearings, the t est which it
 has stood in this direction being certainly all that could be desired. A steel spindle was run in an adamas bearing for 100 entire days consecutively, at a speed of about 1,500 revolutions per minute, yet neither the spindle nor the bearing shows the slightest appearance of wear, and several other experimental tests have proved equally satisfactory. But as a single practical application is preferable to any amount of experimental testing, it may be stated that at the Tig , works of Mr. Grissell, the well-known engineer, a bearing has been for some time in use, and appears to succeed completely. They use it as a fan bearing as a substitute for a Babbitt's patent white metal bearing, brass having been previously proved to be quite inapplicable, owing to the greatfriction and resulting heat, and, although the shaft makes nearly 1,000 revolutions per minute, it
or left, to back water or to turn the vessel rapidly round on its own center.
9th. No danger of the propeller being injured by "sawyers" or "planters" in river navigation, or by ice, or any foreign matter.

10th. Weeds in shallows cannot impede its action. is found that the adamas bearing remains quite cool, requires oiling but once a day, and shows no appreciable signs of wear. In the position in question the life of a Babbitt's bearing is five weeks, and it is confidently believed that the adnmas will last far mors than as many months.

