Strimtifir

THE ADVOCATE OF INDUSTRY, AND JOURNAL OF SCIENTIFIC, MECHANICAL AND OTHER IMPROVEMGANTS.
VOLUME 6.]
NEW-YORK, FEBRUARY 15, 1851.

IMPROVED SEED PLANTER.---Figure 1.

This seed planter is the invention of Mr. oseph W. Fawkes, of Bart Township, Lan caster Co., Pa., and for which a patent was granted on the 16th Dec., 1849. The princi ple of the invention lies in the peculiar con ple of the invention lies in the pecula
The claim is for "the peculiar construction of the adjustable shovels, to clear the mouth of any obstructions. By the raising and lowering of the gates leading into the spouts, the quantity of grain to be sown can be regulated and every variety of seed sown with preci sion."

Figure 1 is a perspective view, and figure 2 a view of nne of the cast iron shovel spouts The cast iron shovels are made of two pieces,

New Water Machine for
The Boston Traveller, alluding to one Hoe's large printing presses, which has lately been put up in that establishment, says: " is driven by a novel and most convenient and powerful little machine, which is seen on the right of the printing press, consisting of small cylinder, with cog-wheels and a pulley attached. It is called a water metre or powe metre, and was invented by that ingenius mechanic, Mr. Samuel Huse, of this city, wel known for hie efficient labors as assistant superintendent of the Cochituate Water-Works This machine was originally invented as a water measurer, and this is the first application of it as a motive power, it being found to possess this power to acmost unexpected and ex traordinary degree. It is simple yet wonder fully efficient. It consists of a hollow cylin der, 10 inches wide and 16 inches in diameter; inside of which is a flange cylinder, about six inches in diameter. This inner cylinder has flanges, on which are four valves, extending from one end to the other of the cylinder, and attached to it by hinges. These valves, when folded, or shut into the cylinder, form a little more than half its surface. Upon one side of the metre, the space between the inside of the hollow and the surface of the flange eylinder is so filled as to occupy something more than the width of one of the valves. Thie filling i made to fit so exactly as to prevent the wate from passing. Upon one side of this filling the water enters the metre, and upon the othe ide the water is discharged. The metre is so placed that the valves will, by the force of gravity, open as they reverse from uader the solid filling, and shut upon the opposite side previous, to coming in contact with it. When
granted the Harlem R. R. Co. the privilsge o extending the lower terminus of their road to Broadway.

A B, forming a tube, grooved into each oth er, and having two points beneath and two projections on each piece, and a handle at tached to one of the pieces. These shovels revolve in a cast iron cylindar, C, with spiral shaped ends, and are for the purpose of rais ing and lowering the points of the shovel, and when revolved in order to keep the hind poin so raised sa not to obstruct the grain or inter fere with it when deposited, and whenever the mouth becomes clogged with any obstruction by drawing the handle, D , to the right or left, the front point of the ehovel is drawn back and the back point is brought forward, whilat with the same motion, the front point is lowered, and the back point raised, and the mouth of the shovel is thus completely cleared of al obstructions.
This is a very simple seed drill, and is now being manufactured by Mr. Fawkea, at the above place, for about $\$ 65$, we believe. Mor information may be obtained by letter ad dressed to him.
der, and comes in contact with the open valves the inner cylinder revolves until the water es capes upon the opposite side; and of course for every revolution of the interior cylinder, a given quantity of water must pass through the metre. This is carefully marked by means of clock which is attached to the cylinder, and which will indicate the precise quantity of w for which has passed through the machine in ny given time.
The revolving flange cylinder is connected aternally, with cog-wheels, a shaft, and pul ley; and from the pulley a oelt extends to the driving wheel of the printing machine.
This metre, or water wheel, is driven by the Cochituate water, introduced from a six inch distributing pipe through a two inch lead pipe and the flow of the water is regulated by mean of a screw gate near the metre. This wheel though so small as to occupy only about 24 inches of room, affords about three horse mo tive power.
[This invention appears to be very similar o a rotary pump, such as Hale's or Carey' thas no cylinder, as far as we can judge by the above, as its diameter is greator than its ength. It is merely a cased water wheel. It canhaveno morepower than that due to the aeight and velocity of the water. Fither Hale's or Carey's pumps will answer for water wheels in the same way
Lead is covered with a more or less thic coating in all waters; sometimes this layer coating is formed of a sub-oxide of lead, insoluble in water and saline solutions. it oth or times, the coating is due to a higher oxide which, in uniting with water and carbonic cid, forms a combination, soluble in from even to ten-thousandths of its weight of pure
huric and pes, by means of organic matter and aesquioz ide of iron, unite, they constitute an effectual protecting shield.

Imitatiog Ivory and Bone
The accompanying deecription of a new process of art, is taken from our valued contempo ry "the London Patent Journal," and is the specification of a patent recently granted to a Benjamin Cheverton, of Camden Town, Eng The invention consiste in preparing or treating alabaster, gypsum, or other variety of sulphate of lime, of which water is a constituent, so as to produce translucency, hardness, and color, and thusimitating ivory and bone, both in ite natural state, and atained or dyed of various colors. For this purpose the patentoe adopte two methode, in one case he forme any object of ornament or utility which may be reqaired, by cutting it of the required shape out of a block of alabaster, gypsum, or other variety of native sulphate of lime; in the other case he reduces the alabaster or gypsum to the atate of plaster of paris powder, and obtains the desired abjeot by preasing this powder into axitable moulde. In eech ceese the suboequent pro cesses adopted are precisely the same. The patentee recornenda the firat method for imitation vory, and the second process for bone
Firet Process.-The articles formed or or moulded by either of the preceding operations, are placed on trage in an iron oven for orty-eight hoore, the hest boing gradually raieed from 250° to 350° Fah. By this means, the water forming a constituent part of the alabaster or gypsum is evaporated, and the articles become opaque, acquire the property of absorbing moisture, and are so hard as to be very brittle.
Second Process.-The articles treated as above are next exposed to the air for three or our hours, and are then immersed in eithe hard white varnish, common olive oil, or any other suitable oleaginous fat, or waxy sub. tance, in a fluid or melted state, until their urfaces become completely saturated; by this means the translucency and transparency of vory and bone are communicated to the articles, as also greater brilliancy of color, in the subsequent operation of dyeing, where color ia required.
Third Process.-The prepared articles are ext immersed, for an instant, in water, of the empereture of 1000 to 150° Fah.; this immersion is repeated every ten or fifteen minutes, until the articles are perfectly saturated. This operation imparts hardness to the object under treutment. The patentee finds the time required for the immersion of the articles attor complete saturation has been effected, as above mentioned, varies according to the size and hape of the object, from two to ten hours. In case the imitation ivory or bone is required of a particular color, suitable mordants, dyea, or colors, must be added to the hot water as are capable of affording the tint or shade desired. The articles thus prepared may readlly be polished with whiting or putty powder in a lath, or by means of the wheel ordinarily employ ed.

Iron Pipes Coated intide with Clase
Mr. W. B. Guy, of Boston, has introduod ron water pi pes lined with glase-an improvement which should be encouraged, as it is a very useful one. The price, wo believe, is more than for lead pipes, but then the evils of corroded lead pipes are entiroly obviated. We re in favor of employing this kind of pipes to any other, because of their cortein safety. It s true that some water affects lead pipes in a very small degres but it is alwasy
plan to leave doubt out of the questio

