

VOL. VI. NO. 21.....[New Series.]..... Eighteenth Year
NEW YORK, SATURDAY, MAY 24, 1862.

EXTENSION OF PATENTS---FOR WHOSE BENEFIT THEY ARE GRANTED.

There seems to be an impression among inventors that, since the law of March 4, 1861, went into force the previous law in respect to extending patents for seven years was abrogated. This is not so in regard to cases which were patented under the old law. Any patentwhich was granted prior to March 4, 1861, may be extended for seven years on proper application to the Patent Office, provided the patentee has not already been amply remunerated for his invention and proves to the satisfaction of the Commissioner that he has used proper diligence in attempting to realize gains from his patent. The patentees of 1848 and 18.19 should lose no time in making out a statement of their profits and losses in consequence of their pattents, and in seeing counsel in regard to an extension, if they wish the term of these expiring patents continued for another seven years.

It is often the case that the extended term of a patent produces to the patentee a ten-fold profit over the amount realized during the first fourteen years of its existence. The assignees of a patent cannot obtain this extension ; it must be done at the instance of the inventor, for whose sole benefit it is granted.

For full particulars concerning extension, address
Munn \& Co.,
Editors and Proprietors of the Scientific American 37 Park-row, New York.

ARE IRON-PLATED SHIPS INVULNERABLE?

The London Times has made the remark repeatedly that a struggle was going on in England between the Navy and War Departments ; the Admiralty endeavoring to construct vessels which no shot could penetrate, and the ordnance officers of the War Depart ment striving to make guns that would pierce the sides of any ship.
This contest is a sample and a portion of the struggle that is going on in all countries and at all times. In the perpetual efforts which men are making to obtain power over their fellow men ingenuity is constantly exercised to devise means for injuring others and for protecting ourselves. All the complicated engines of war are but equivalents for the shield and spear.

From the begirining of war-since Cain killed his brother-the power of destruction has always had the supremacy over that of defense. It is easy to destroy. Months of labor are required by scores of laborers to erect a building which a child, by dropping a lighted match into a heap of shavings, may sweep away in an hour. Very few are the impregnable fortifications on our globe, and those are inaccessible. As a general rule, however carefully or laboriously a fort may be constructed, its capture, by a competent force, requires but a limited number of days.

This law applies with peculiar force to structures floating upon the water. Here new means of destruction are brought into action, and the difficulty of preservation is greatly augmented. A hole of moderate size made in the bottom of the structure causes it to sink down in the fluid, and the blowing of the wind very frequently so disturbs the water as to shake the fabric to pieces.

We have recently called attention to the fact that
the most powerful artillery in use has never been tried upon iron plates; but if naval constructors should succeed in building ships that would resist the heaviest cannon that can be made they would have triumphed over only one lind of destructive enginery. Their ships would be exposed to the attack of large vessels smashing against them as rams, or they might be pierced by protruding prows; or, more formidable still, they might be blown up by mines of powder under their keels. We know that "torpedos" have never operated very successfully but this has always been owing to imperfection in the arrangements. It is only necessary to place a hogshead of fulminating mercury and gunpowder against a vessel's bottom, and to explode it there, in order to destroy any structure which man can make to float upon the water
We have already shown that the fight between the Merrimac and Monitor did not teach the lesson which has been drawn from it in regard to the impregnability of iron-plated ships; it is also true that the conquests over our sea-coast forts by our wooden ships do not show any superiority of naval over land artillery. Those forts were armed merely with small guns. Had their armaments consisted of even 11inch columbiads, with supplies of suitable ammunition, there can be no reasonable doubt that every wooden ship which came within fair range of them would have been blown to pieces.
It is a curious fact that we are fighting this great war to a large extent with arms that have become obsolete, and the results of its battles consequently throw no light upon the present relations of the powers of attack and resistance. And even if these relations cauld be shown with perfect precision at the present time, the knowledge would afford a very poor criterion to judge of them at any future time, however near. In the intenseactivity which now prevails in the invention of the enginery of war, the conditions are shifting almost daily, and no human foresight can reasonably predict what they will be a month hence.
Judging, however, from the difficulty of construct ing and preserving, and the ease of destroying, especially with the forces which modern chemistry has placed in our hands, it is not probable that human skill will ever produce a vessel which will prove invulnerable.

CONVENTION OF SORGHUM SUGAR MANUFAC TURERS.

We have received a report of a very large and interesting convention of sugar cane growers and manufacturers, held at Adrian, Michigan, on the 16th and 17 th ult. Representatives from Ohio, Michigan, Indiana, Illinois, Missouri and Iowa were present, and many interesting facts were related in connection with the culture of the cane, and the treatment of its juice to obtain sirup and sugar. Many specimens of sirup and samples of sugar were exhibited. There was also an exhibition of seven evaporators, namely, that of H. G. Bulkley, Kalamazoo, Michigan ; C. Cory, Lima, Indiana; Eagle Works Manufacturing Company, Chicago, Illinois; O. N. Brainard, Marion County, Iowa ; D. D. Tooker, Napoleon, Michigan; John Miller, Rolling Prairie, Indiana; Cook's portable, by J. Richards, Raisen, Michigan. A committee of the convention was appointed to examine these evaporators and decide upon their merits; C. Cory's apparatus, called "Cook's Evaporator with Cory's Imprcvement," received the preference of the judges. The nature of this invention, as described in a pre vious volume of the Scientific American, consists in the arrangements of an elevated partition extended from one side of the pan to the other, in combination with a gate, in such a manner that the circulation of the evaporating fluid can be detained or regulated at pleasure, and that the sirup in its clarified state, and while separated from its scum by continuous active ebullition, can be passed into the finishing part of the pan. We have received two samples of beautiful pale yellow sugar made in this evaporator; they formed parts of parcels for which prizes were awarded.
Mr . Cory, in a communication to the convention, gave some useful information respecting the culture of the sorghum and the treatment of its juice. He stated that light sandy soils produce lighter-colored and better-flavored sweets, but for the sake of larger
gains his preference is for richer soils, abounding in good corn-growing qualities. The opinion often published, that Chinese cane is best for sirup and imphee for sugar, is probably correct. Early planting is desirable; the seeds should be first moistened and nearly sprouted; they should be thinly covered, and lightly pressed down, as planted; the ground, if inclined to be wet, should be ridged; the crop is most easily tended when in rows, nearly four fect apart each way ; early and frequent cultivation is desirable; a mix ture of ashes, lime and gypsum applied to the hills in suitable quantities during the early stages of its growth, is beneficial in many respects, stimulating its growth, and destroying and preventing the existence of multitudes of parasites. When the crop is gathered before proper maturity it should remain a few days, protected from heat and cold, to ripen, before the cane is crushed.
The juice of the samples of sugar exhibited was pressed from the cane by rollers in the ordinary manner. It was then passed to the receiving tub at the head of the evaporating pan, and a small amount of reshly-slacked lime added in a diluted state, to neutralize, in part, the acidity of the juice, and to aid in its defecation. The pan used is of copper, three feet eight inches wide and ten feet long. This is placed on a stationary brick arch, and is divided into apartments. In the first division a most perfect defecation is secured, after which, in a clarified state, and entirely freed from scum, the sirup is passed into the finishing portion of the pan, and subjected to a continued intense heat, till sufficiently cookedat the further end of the pan, at which point it is passed off at the speed of fromeight to twelve gallons per hour through the day. Nothing but the small quantity of lime added to the juice was employed in treating the suma that we have examined.
Samples of sorghum sirup, analyzed at Belcher's re finery in Chicago, presented the following results :-

Water.
Other substances... $1 \cdot 50$

00.00

Judging from the interest now taken in the cultivation of sorghum, imphee and beet root by our Western agriculturists, and from the energy and ingenuity displayed to invent improved apparatus for manufacturing sirup and sugar, we conclude that a new and profitable branch of industry is about to be established in our country.
REPORTS OF OUR MILITARY COMMISSION TO EUROPE.

On the 2d day of April, 1855, Jefferson Davis, then Secretary of War of the United States, signed a commission appointing Major R. Delafield, of the Corpp of Engineers, Major A. Mordecai, of the Ordnance Department, and Capt. G. B. McClellan, of the Cavalry, of the United States Army, commissioners to visit the theater of the war which was then in progress between England, France, Turkey and Sardinia on the one side, and Russia on the other.
The object of the visit was to " obtain information with regard to the military service in general, and especially the practical working of the changes that have been introduced of late years into the military systems of the principal nations of Europe.'
Each of the three members of the commission made an elaborate report of his observations, and a few copies of the reports were printed at the time. Since the breaking out of the war in our country a large demand has arisen for these reports, and when General McClellan was appointed to the chief command of the army, a Philadelphia publisher issued an edition of his report in convenient form for circulation. An extended notice of this book, with illustrated extracts, has appeared in our columns.
On the 2d day of March, 1861, the House of Representatives ordered the printing of 20,000 copies of the reports of Majors Mordecai and Delafield, and to the politeness of the Hon. William Kellogg we are indebted for a copy of each.
These books are far superior in paper and printing to most of the work executed by order of Congress, and the superiority of the illustrations is still more marked. They are principally lithographs by E. R. Jewett \& Co., of Buffalo, N. Y., the same parties who have for a few years executed the engravings for the

Patent Office reports, which we have so much admired. We are glad to see this imprevement inguvemment printing and engraving, and we hope that it will be carried forward until this class of work is done as well for the nation as it is for private individuals.

THE GOMUR FROM UOAL TAR.

Blue Colors. . TVe have atready described the purple, red and crimsen color derived from aniline. On the 30th of Juiy, 1861, G. E. C. Delaire, of Paris, France, obtaincal an American patent for an aniiine blue and violer. The following is an extract from the patent :
Take ordinay anifinc-red-porify and mix it with an cqual quantity of pure aniine. This mixture is maintigrade. It then becomes a violet colori, is mixed with water and hydrochloric acid. and is brought to the beiling point. The excess of the red ainiline minture that does not become a violet color is thereby dis,olved; the residue that remains is the vinlet color songht. If this violet res-
idue be boiled successirely with hodrochluric acid diluted with a small guantity of water, and then washed in boiling water, a precipitate will be preduced of a blue color ing water, a precipitate will be pre
with a copper tinge on its surface.
The claim is for the method described of converting the red of aniline into the blac and viviet of aniline, by treationg the former with pure aniline, in the manner substantially as set forth.
Blue de Paris is predned by heating, for thirty hours, in a sealed tube, at a temperature of 360°, one part of anhyurous bichloride of mercury with two parts of aniline. This color resists the action of weak acids and ajkalies, but it assumes a red hue when acted upon by these agents in a concentrated state. It dycis animal tibers with facility. This blue was discovered by N. M2. Persoz, De Jaynes and Salvetat, of Paris.
Whitegum lac inpewder, beiled with cardenate of soda and an alcohelic solution of red aniline, forms a blue for printing on calicees.

Green Colors.-Messrs. S. Oliti, U. Lowe and Dr. Calvert, of Manchester, $\operatorname{Rng} l a n d$, obticincela patent June 11, 1860, for poducing a green anitine color called emoraldine, on cotion fabrics. The process consists in printing an acid chloride of aniline on cotton cloth which has been preparcl with a mordant of chlomite of potash. In a few hours after the aniline is printed on the cloth a beautiful bright green color gradually appears. If this green-colored fabric is then passed through a solution of the bichromate of putash, the color be comes a dark blue, called azuine. Naphthaline Culors.-That Lecutiful, colorless solid hydrecarbon naphthaline, has lately been subjected to many experiments, for the purpose of obtaining colors from it, and considerable success has attended these efforts. It unites with nitric acid, forming binitrenaphthaline. 'This is boiled with sulphuric acid, and gramulateo zinc is adhed in smali purtions. The temperature is grudually raised to 3920 , and the liquid becomes a deep red color. About eight volumes of water are now added, and the whole allowed to hoil for a few moments, then permitted to col duwn, when it lleinont: bautiful red and oria;:-nlored crystals. According to $\%$ Rotissin, a Frenct chemist, it is of ne:sily of the same natere as alzarine ebtaned from madder. It colors a acd on cottoi by using a mordant of alum in preparing the fanic. Purple color can also be oltained from naphathatine ly employing oxide of iron for a mordant. Sighthame colore tre but in their infincy, and not yet commercial products, but they may ultimately superscude many ether colors.
Seuctniline - -itinis is a new and perfectly white base, obtaned from puce rosinime, by Dr. Hotman, of London. iossuiline is rajaly attacked by bydeogen in a nasicent state, or by walphweted hydrogen, and tive equivalents of hydrogen are supplicdto it, formibg leucaniline. Its compesition is $\left\{: 1 f_{21} \mathrm{~N}\right.$, pure rosmiline, $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3}$. 'Thni;, by supplying but two equivalents of hydrogen to the rusecolored substance derive! from aniline, a white product is obinibed, which is anhydrons, but soluble in alcohol. It is converted inte a chioride when beiled wich hydrochioric acid. This sult is of dezaling vihtences. It unites in solution with the bichloride of platinum and forms a salt, tiocrystals of whieh are of a brilliant orange coler. Leucaniline unites with nitric acid, foming the nitrate of leucmiline, which is a white salt, soluble in water. It unites with a large number of age:ats, such as bistiphate of carbon, chlo-
ride of benzole, \&c., forming new compounds. There
scems to be a chemical relationship between indige and these aniline colors. There is, for example, white indigo, the compesition of which is $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$, and blue indige (. . $\mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$. These twe cquivalentis of hydregen make the whole difference between white and blue indigo, and twe equivalents of hydregen make the difference between resaniline and white aniline (leucaniline). By supplying an exidizing aght to leacaniline it becomes a deep red again. The peruxide of barium, perchleride of iren, and especially the chromate of potash, produce this change. When resaniline is builed for a long peried with compounds rich in exigen, it changes into an amorphous powder of a dark brown color. Λ fulminating com. pound is produced with the nitrate of leucaniline and the bichloride of platinum.

The Pleasures of Busmess.

Such complimentary letters as we receive from these for whom we act as attorncys fully compensate us for all the troubles and vexations attendent upon the management of a large business. The following fiavors of this kind were received by a single mail last week. Read them.--Ens.]
Aiessins. Mrx \& Co.:-1 Permit me to express my sinmanaged my claims for improvemnents in Rotary Punps bringing them to a successful issue. V'ery probably I sliould never have brought my invention before the public had it not been for the advice and encouragement received from you. It is :in old adage that "necessity is the mother of (invention," and I think there is much truth in the saying. mechanics of the sreater part of their employment; neressity compels them to seek other channels for support ithe inventive mind strives to bring to light something new that will enable him to establisin a business for himself that his :uture weliare may not be so entirely dependant upen the caprice of others. And if there is one thing to encoutage him more than another, it is to know that he long exierience affords. Your institution is to the inventor what the beacon light is to the mariner-a sure guide to a a sale haven. One of the many advantages to loe derived from the employnent of your Agency is, that it recpuires no personal attention after the matter is placed in your
hauds. 1 ans satisfied that you make the interest of the inventor your own. My experience in the rotary pump busness for the past ten years convinces me that the one will make the best practical working machune in the world and the easiest regulated and kept in order. I shall, at an early day, cmploy you to obtain a patentf or the other devices of mine now in your possession. Before closing this long letter, permit me again to thank you for discharging my business with so much fidelity. With my best wishcs Brockport, Ill., May 6, 1862

Messrs. Mus í (o. :--Me:s--1 suppose you would like to hear how one of your old customers is getting along with an instrument he had patented for cutting the noses of swine to mevent them rooting. To this i can say, tirst rate. I have sold over two thousand dollars' worth already and I ams selling more or less territorial riglits every
day. It has pruved a valuable operation. I am under a thousand obligations to you for favors in connection therewith, and I shall soon apply to you for services in getting out another patent. Respectfully, yours, Revebs Ifloid.
Spring Hill, Iil., May 5, 1862.
Maniss. Munv \& Co. :-Through jom Agency we have on most our patent, and for your kindness we return you our most sincere thaniss. 1 am prospered stall enfor another and different object altogether, and I shall surely :u, to your Agency in preference to any othe I have received a number of circulars from Washing ton we.liins forth what certain parties there will do for me,

Conservatory in the Central Park.

The Central Park Commissioners have contracted with Missre. Parsons \& C•., of Flushing, for the construction of a grand conservatory, the largest in the United States, upon the Park grounds. The building is to be a "Crystal L'alace," of iren and glass, 200 feetleng, 70 feci wide, and about 50 feet high. Its base will be a parallelogram, and there will be three storics, curving inward like the successive folds of a turban. The conservatory will frent Fifth avenue; its center leing epposite Screnty-fourth strect; and directly in its rear will be a beatiful little pund, with walled sides of a symmetrical shape, which will be built daring the coming two ycars. When the Fifth Avenue is graicil to its proper light, it will be on a level with the second story of the propesed nservatory; and the main entrance to the edifice will therefore be on that story. Stairs and balconics will give access to every portion of the building. The contract provides that the grantees must erect the building entirely at their own expense, after the plans already agreed upon; that they must place
in it nothing but flowers or rare trees or plants; that they shall be allowed to sell bouquets, \&c., to visitors ; that the public shall always be admitted free; that geed order shall always be maintained inside, at the expense of the grantfees : audthat the work shall be completed by the: first of January, 1864. The specifications of the contract are minute, and are believed to cever the objections which might be made to the granting of a monopoly of such a character. The grantees on their parts, agree to pay a rent which will add considerably to the revenues of the Park. The conservatory will cost about $\$ 50,000$.

A Yankee Soldier.

The following characteristic sketch is from the Commercial Advertiser, Hon lulu, Hawaiian Island: We heard a few days since an anecdete which well illustrates the character of a large class of the American peeple, and the readiness with which the peaceful citizen becomes changed inte the soldier. Most, of our townsmen will remember Mr. J. Griswold, whe came to Honelulu some twe years since, and made one or twe veyages to the Phomix group and -ther islands, searching for guane. Hearing of the rebellion, he returned immediately to Honolulu from - ne of his expeditions, having determined to enlist in the army. Precuring a book on army tactics, he went through a scries of daily drills under the tutelage of Captain J. H. Brown, the experienced commander of the Honolulu Rifles, until the sailing of the packet for San irrancisco. On the passage horae, he applied himself to the study of military tactics, and on reaching New York immediately offered his services, was examined and accepted as a captain, and within ninety days after leaving Honolula, cmbarked to take an active part in the famous Burnside expedition to North Carelina, which has just gained a victory in the capture of Roanoke Island, and a half dezen towns and villages in the neighberhoed, and pomises seon to capture Richmond. This instance will show how readily, if neccssary, the Americans can and will raise an army of a million soldiers te meet their focs, whether from within or without.

Cost of Raising Sorghum.

S. Ward communicates to the Prairie Furmer the - llowing statement of the expense of raising Chinters sugar cane, and manufacturing the sirre, the resalt of his ewn expcrience - -

The "London Quarterly" on the "Monitor."
We have received from the publishers, Leenard Scett \& Ce., the April numbers of the "Lmmion (zuarterly " and "Westminster Revicws." The " Londun Quarterly" has an able article on the lighit between the Monitor and the Merrimac, in which the writer takes the same ground that was taken at the time by the Somemmic Ammacan. The Eoghish Parliamment and people are rebuked for their foolish excitement on the subject, and the superiority of stationay $\begin{aligned} & \text { © }\end{aligned}$ floating fortifications is plainly shown. It is stated that the expense of a gun on a steamer is nearly fouz times greater than that of a gun in a fort. The writer alse remarks that iren forts will be little if any more costly than these of granite, from the thinness of iron walls and the absersce of internel piens.

